This paper describes the design of a simple and compact optical system capable of examining fundamental properties of light coupling to surface plasmon resonance (SPR) on a thin gold film. The setup, involving a rotatable Attenuated Total Reflection device, from which the reflected light is focused by means of a parabolic mirror, allows for the investigation of the dependence of the reflected intensity on the angle of incidence without moving the detector. It additionally makes provision for a convenient exchange of light sources or the possibility to incorporate a broadband source suitable to investigate SPR at different wavelengths. Theoretical simulation of the experimental data is provided, as well as straightforward calculations for exploring the physics of light excited waves propagating on a surface.

1.
R. H.
Ritchie
, “
Plasma losses by fast electrons in thin films
,”
Phys. Rev.
106
(
5
),
874
881
(
1957
).
2.
J.
Bosenberg
, “
Photoelectrons from optically excited nonradiative surface plasma oscillations
,”
Phys. Lett. A
37
(
5
),
439
440
(
1971
).
3.
W. P.
Acker
 et al., “
Quadrupole mode in the extinction and elastic-scattering spectra of gold microstructures
,”
Opt. Lett.
12
(
7
),
465
467
(
1987
).
4.
J.
Barreto
,
T.
Roger
, and
A.
Kaplan
, “
Resolving the ultrafast dynamics of charge carriers in nanocomposites
,”
Appl. Phys. Lett.
100
(
24
),
241906
(
2012
).
5.
A. J.
Tudos
and
R. B. M.
Schasfoort
,
Handbook of Surface Plasmon Resonance
(
Royal Society of Chemistry
,
Cambridge
,
2008
), pp.
9
11
.
6.
W.
Fritzsche
and
T. A.
Taton
, “
Metal nanoparticles as labels for heterogeneous, chip-based DNA detection
,”
Nanotechnology
14
(
12
),
R63
R73
(
2003
).
7.
T.
Holmgaard
 et al., “
Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths
,”
Phys. Rev. B
78
(
16
),
165431
(
2008
).
8.
D. J.
Bergman
and
M. I.
Stockman
, “
Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems
,”
Phys. Rev. Lett.
90
(
2
),
027402
(
2003
).
9.
A. S.
Barker
, Jr.
, “
An optical demonstration of surface plasmons on gold
,”
Am. J. Phys.
42
(
12
),
1123
1126
(
1974
).
10.
H.
John Simon
,
D. E.
Mitchell
, and
John G.
Watson
, “
Surface plasmons in silver films—A novel undergraduate experiment
,”
Am. J. Phys.
43
,
630
636
(
1975
).
11.
J. D.
Swalen
 et al., “
Plasmon surface polariton dispersion by direct optical observation
,”
Am. J. Phys.
48
,
669
672
(
1980
).
12.
P.
Orfanides
 et al., “
Demonstration of surface plasmons in metal island films and the effect of the surrounding medium—An undergraduate experiment
,”
Am. J. Phys.
68
,
936
942
(
2000
).
13.
E.
Kretschmann
, “
The determination of the optical constants of metals by excitation of surface plasmons
,”
Z. Phys.
241
,
313
324
(
1971
).
14.
ThorLabs
, “Off-axis parabolic mirrors, protected and unprotected gold coatings (0.8–20 μm),” <http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=5447>.
15.
W.
Knoll
, “
Interfaces and thin films as seen by bound electromagnetic waves
,”
Annu. Rev. Phys. Chem.
49
,
569
638
(
1998
).
16.
Res-Tec
, “Simulate SPR curves with winspall,” <http://www.res-tec.de/tutorial2-01.html>.
17.
H.
Raether
,
Surface Plasmons on Smooth and Rough Surfaces and on Gratings
(
Springer-Verlag
,
Berlin/Heidelberg/New York/London/Paris/Tokyo
,
1987
), pp.
4
39
.
18.
U.
Schroder
, “
Der einfluss dunner metallischer deckschichten auf die dispersion von oberflachenplasmaschwingungen in gold-silber-schichtsystemen
,”
Surf. Sci.
102
(
1
),
118
130
(
1981
).
19.
O.
Pluchery
,
R.
Vayron
, and
K. M.
Van
, “
Laboratory experiments for exploring the surface plasmon resonance
,”
Eur. J. Phys.
32
(
2
),
585
599
(
2011
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.