Operator algebra techniques are employed to derive the quantum evolution operator for the harmonic oscillator. The derivation begins with the construction of the annihilation and creation operators and the determination of the wave function for the coherent state as well as its time-dependent evolution, and ends with the transformation of the propagator in a mixed position-coherent-state representation to the desired one in configuration space. Throughout the entire procedure, besides elementary operator manipulations, it is only necessary to solve linear differential equations and to calculate Gaussian integrals.
References
1.
2.
R.
Shankar
, Principles of Quantum Mechanics
, 2nd ed. (Plenum
, New York
, 1994
).3.
S. A.
Ponomarenko
, “Quantum harmonic oscillator revisited: A Fourier transform approach
,” Am. J. Phys.
72
(9
), 1259
–1260
(2004
).4.
G.
Chen
, “Exact solutions of N-dimensional harmonic oscillator via Laplace transformation
,” Chin. Phys.
14
, 1075
–1076
(2005
).5.
P. A. M.
Dirac
, The Principles of Quantum Mechanics
, 4th ed. (Oxford U.P.
, New York
, 1958
).6.
C.
Cohen-Tannoudji
, B.
Diu
, and Frank
Laloe
, Quantum Mechanics
, Vol. 1, 2nd ed. (Wiley
, New York
, 1977
).7.
J. J.
Sakurai
and J.
Napolitano
, Modern Quantum Mechanics
, 2nd ed. (Addison-Wesley
, Boston
, 2011
).8.
R. P.
Feynman
and A. R.
Hibbs
, Quantum Mechanics and Path Integrals
(Dover
, Mineola
, 2005
).9.
W.
Dittrich
and M.
Reuter
, Classical and Quantum Dynamics
, 2nd ed. (Springer
, Berlin
, 2004
).10.
11.
S. M.
Cohen
, “Path integral for the quantum harmonic oscillator using elementary methods
,” Am. J. Phys.
66
(6
), 537
–540
(1998
).12.
B. R.
Holstein
, “The harmonic oscillator propagator
,” Am. J. Phys.
66
(7
), 583
–589
(1998
).13.
N. S.
Thornber
and E. F.
Taylor
, “Propagator for the simple harmonic oscillator
,” Am. J. Phys.
66
(11
), 1022
–1024
(1998
).14.
K.
Hira
, “Derivation of the harmonic oscillator propagator using the Feynman path integral and recursive relations
,” Eur. J. Phys.
34
, 777
–785
(2013
).15.
J.
Schwinger
, “Gauge invariance and vacuum polarization
,” Phys. Rev.
82
, 664
–679
(1951
).16.
F. A.
Barone
, H.
Boschi-Fihho
, and C.
Farina
, “Three methods for calculating the Feynman propagator
,” Am. J. Phys.
71(5)
, 483
–491
(2003
).17.
R. M.
Wilcox
, “Exponential operators and parameter differentiation in quantum physics
,” J. Math. Phys.
8
, 962
–982
(1967
).18.
19.
R. J.
Glauber
, “Coherent and incoherent states of radiation field
,” Phys. Rev.
131
, 2766
–2788
(1963
).20.
21.
22.
W.
Berej
and P.
Rozmej
, “A phase in a coherent-state wavefunction—Is it always irrelevant?
” Eur. J. Phys.
20
, L25
–L27
(1999
).23.
P. A.
Horváthy
, “Extended Feynman formula for harmonic oscillator
,” Int. J. Theor. Phys.
18
, 245
–250
(1979
).24.
© 2016 American Association of Physics Teachers.
2016
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.