Operator algebra techniques are employed to derive the quantum evolution operator for the harmonic oscillator. The derivation begins with the construction of the annihilation and creation operators and the determination of the wave function for the coherent state as well as its time-dependent evolution, and ends with the transformation of the propagator in a mixed position-coherent-state representation to the desired one in configuration space. Throughout the entire procedure, besides elementary operator manipulations, it is only necessary to solve linear differential equations and to calculate Gaussian integrals.

1.
E.
Merzbacher
,
Quantum Mechanics
, 2nd ed. (
Wiley
,
New York
,
1970
).
2.
R.
Shankar
,
Principles of Quantum Mechanics
, 2nd ed. (
Plenum
,
New York
,
1994
).
3.
S. A.
Ponomarenko
, “
Quantum harmonic oscillator revisited: A Fourier transform approach
,”
Am. J. Phys.
72
(
9
),
1259
1260
(
2004
).
4.
G.
Chen
, “
Exact solutions of N-dimensional harmonic oscillator via Laplace transformation
,”
Chin. Phys.
14
,
1075
1076
(
2005
).
5.
P. A. M.
Dirac
,
The Principles of Quantum Mechanics
, 4th ed. (
Oxford U.P.
,
New York
,
1958
).
6.
C.
Cohen-Tannoudji
,
B.
Diu
, and
Frank
Laloe
,
Quantum Mechanics
, Vol. 1, 2nd ed. (
Wiley
,
New York
,
1977
).
7.
J. J.
Sakurai
and
J.
Napolitano
,
Modern Quantum Mechanics
, 2nd ed. (
Addison-Wesley
,
Boston
,
2011
).
8.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
Dover
,
Mineola
,
2005
).
9.
W.
Dittrich
and
M.
Reuter
,
Classical and Quantum Dynamics
, 2nd ed. (
Springer
,
Berlin
,
2004
).
10.
B. R.
Holstein
,
Topics in Advanced Quantum Mechanics
(
Addison-Wesley
,
Reading
,
1992
).
11.
S. M.
Cohen
, “
Path integral for the quantum harmonic oscillator using elementary methods
,”
Am. J. Phys.
66
(
6
),
537
540
(
1998
).
12.
B. R.
Holstein
, “
The harmonic oscillator propagator
,”
Am. J. Phys.
66
(
7
),
583
589
(
1998
).
13.
N. S.
Thornber
and
E. F.
Taylor
, “
Propagator for the simple harmonic oscillator
,”
Am. J. Phys.
66
(
11
),
1022
1024
(
1998
).
14.
K.
Hira
, “
Derivation of the harmonic oscillator propagator using the Feynman path integral and recursive relations
,”
Eur. J. Phys.
34
,
777
785
(
2013
).
15.
J.
Schwinger
, “
Gauge invariance and vacuum polarization
,”
Phys. Rev.
82
,
664
679
(
1951
).
16.
F. A.
Barone
,
H.
Boschi-Fihho
, and
C.
Farina
, “
Three methods for calculating the Feynman propagator
,”
Am. J. Phys.
71(5)
,
483
491
(
2003
).
17.
R. M.
Wilcox
, “
Exponential operators and parameter differentiation in quantum physics
,”
J. Math. Phys.
8
,
962
982
(
1967
).
18.
W. H.
Louisell
,
Quantum Statistical Properties of Radiation
(
Wiley
,
New York
,
1973
).
19.
R. J.
Glauber
, “
Coherent and incoherent states of radiation field
,”
Phys. Rev.
131
,
2766
2788
(
1963
).
20.
K.
Gottfried
,
Quantum Mechanics I: Fundamentals
(
Benjiamin
,
New York
,
1966
).
21.
J.
Glimm
and
A.
Jaffe
,
Quantum Physics
(
Springer
,
New York
,
1981
).
22.
W.
Berej
and
P.
Rozmej
, “
A phase in a coherent-state wavefunction—Is it always irrelevant?
Eur. J. Phys.
20
,
L25
L27
(
1999
).
23.
P. A.
Horváthy
, “
Extended Feynman formula for harmonic oscillator
,”
Int. J. Theor. Phys.
18
,
245
250
(
1979
).
24.
E.
Zeidler
,
Quantum Field Theory
, Vol. 2 (
Springer
,
Berlin
,
2009
), pp.
537
539
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.