In this study, we present two practical applications of the deconvolution of time series in Fourier space. First, we reconstruct a filtered input signal of sound cards that has been heavily distorted by a built-in high-pass filter using a software approach. Using deconvolution, we can partially bypass the filter and extend the dynamic frequency range by two orders of magnitude. Second, we construct required input signals for a mechanical shaker in order to obtain arbitrary acceleration waveforms, referred to as feedforward control. For both situations, experimental and theoretical approaches are discussed to determine the system-dependent frequency response. Moreover, for the shaker, we propose a simple feedback loop as an extension to the feedforward control in order to handle nonlinearities of the system.

1.
B. P.
Abbott
 et al., “
Observation of gravitational waves from a binary black hole merger
,”
Phys. Rev. Lett.
116
,
061102
(
2016
).
2.
J.
Mizuno
,
K. A.
Strain
,
P. G.
Nelson
,
J. M.
Chen
,
R.
Schilling
,
A.
Rüdiger
,
W.
Winkler
, and
K.
Danzmann
, “
Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors
,”
Phys. Lett. A
175
,
273
276
(
1993
).
3.
Signal processing with gw150914 open data
,” <https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html>.
4.
D. P.
MacAdam
, “
Digital image restoration by constrained deconvolution
,”
J. Opt. Soc. Am.
60
,
1617
1627
(
1970
).
5.
J. C.
Russ
,
The Image Processing Handbook
(
CRC Press
,
Boca Raton, FL
,
2011
).
6.
W.
Wallace
,
L. H.
Schaefer
, and
J. R.
Swedlow
, “
A working person's guide to deconvolution in light microscopy
,”
Biotechniques
31
,
1076
1097
(
2001
).
7.
R. C.
Ramachandran
,
G.
Raman
, and
R. P.
Dougherty
, “
Wind turbine noise measurement using a compact microphone array with advanced deconvolution algorithms
,”
J. Sound Vib.
333
,
3058
3080
(
2014
).
8.
Y. K.
Yong
,
S. O. R.
Moheimani
,
B. J.
Kenton
, and
K. K.
Leang
, “
Invited review article: High-speed flexure-guided nanopositioning: Mechanical design and control issues
,”
Rev. Sci. Instrum.
83
,
121101
(
2012
).
9.
A. J.
Fleming
and
K. K.
Leang
,
Design, Modeling and Control of Nanopositioning Systems
(
Springer International Publishing
,
Switzerland
,
2014
).
10.
H.
Watanabe
,
T.
Uchihashi
,
T.
Kobashi
,
M.
Shibata
,
J.
Nishiyama
,
R.
Yasuda
, and
T.
Ando
, “
Wide-area scanner for high-speed atomic force microscopy
,”
Rev. Sci. Instrum.
84
,
053702
(
2013
).
11.
Y.
Li
and
J.
Bechhoefer
, “
Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope
,”
Rev. Sci. Instrum.
78
,
013702
(
2007
).
12.
S. W.
Smith
,
The Scientist & Engineer's Guide to Digital Signal Processing
(
California Technical Publishing
,
San Diego, CA
,
1997
).
13.
A. V.
Oppenheim
and
R. W.
Schafer
,
Discrete-Time Signal Processing
(
Pearson Higher Education, Inc.
,
Upper Saddle River, NJ
,
2010
).
14.
Supplementary material is at http://dx.doi.org/10.1119/1.4960294 for material containing a Matlab/GNU Octave script with a recorded data set from a sound card to demonstrate the reconstruction of a sawtooth input wave form by deconvolution using various regularizations. The second part of the script illustrates the spectral behavior of a truncated square wave.
15.
V.
Volterra
,
Theory of Functionals and of Integral and Integro-Differential Equations
(
Dover Publications, Inc.
,
New York
,
1959
).
16.
G.
Gripenberg
,
S.-O.
Londen
, and
O.
Staffans
,
Volterra Integral and Functional Equations
(
Cambridge U.P.
,
Cambridge
,
1990
).
17.
W. J.
Rugh
,
Nonlinear System Theory
(
The John Hopkins U.P.
,
1981
).
18.
An equivalent description can be given in terms of the Laplace transformation or the Z-Transform in case of discrete-time systems.
19.
L. J.
Wang
, “
Causal ‘all-pass’ filters and kramers-kronig relations
,”
Opt. Commun.
213
,
27
32
(
2002
).
20.
J.
Bechhoefer
, “
Kramers-kronig, bode, and the meaning of zero
,”
Am. J. Phys
79
,
1053
1059
(
2011
).
21.

In the discrete time domain, the convolution integral in Eq. (2) is mapped into a matrix equation, and in this sense, deconvolution is a matrix inversion. In majority of cases, such response matrices are singular, and complicated singular-value decomposition is required (Ref. 22).

22.
R. C.
Aster
,
B.
Borchers
, and
A. H.
Thurber
,
Parameter Estimation and Inverse Problems
(
Elsevier
,
Walham, MA
,
2013
).
23.
A.
Meister
,
Deconvolution Problems in Nonparametric Statistics
(
Spinger-Verlag
,
Berlin Heidelberg
,
2009
).
24.

Same problems remain in the deconvolution by matrix inversion.

25.
S. I.
Kabanikhin
,
Inverse and Ill-Posed Problems
(
De Gruyter
,
Berlin
,
2012
).
26.
W.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
(
Cambridge U.P.
,
Cambridge
,
2002
).
27.
J.
Hadamard
, “
Sur les problèmes aux dérivées partielles et leur signification physique
,”
Bull. Univ. Princeton
13
,
49
52
(
1902
); available at https://babel.hathitrust.org/cgi/pt?id=chi.095582186;view=1up;seq=65;size=125.
28.
M.
Poulose
, “
Literature survey on image deblurring techniques
,”
IJCAIT
2
,
286
288
(
2013
).
29.

We used the common definition in systems engineering where the associated Fourier transform is defined by û(ω)=u(t)exp(iωt)dt. The physics literature mostly uses the opposite sign convention for Fourier transforms.

30.
C.
Zeitnitz
, “
Soundcard oscilloscope
,” <http://www.zeitnitz.de/Christian/scope_en> (
2012
).
31.
K.
Mertens
, “
Bauanleitung Soundkartenadapter
,” Fachhochschule Münster, Germany (
2010
).
32.
33.
The least square fit was performed in the logarithmic scale for suitable weighting of small amplitudes at low frequencies. It minimizes the square of relative residuals.
34.
H.
Wilbraham
, “
On certain periodic function
,”
Cambridge Dublin Math. J.
3
,
198
201
(
1848
); available at https://books.google.de/books?id=JrQ4AAAAMAAJ&pg=PA198&redir_esc=y#v=onepage&q&f=false.
35.
J.
Willard Gibbs
, “
Fourier's series
,”
Nature
59
,
200
(
1898
).
36.
J.
Willard Gibbs
, “
Fourier's series
,”
Nature
59
,
606
(
1899
).
37.
A. A.
Michelson
and
S. W.
Stratton
, “
A new harmonic analyser
,”
Philos. Mag.
5
,
1
13
(
1898
).
38.
W. J.
Thompson
, “
Fourier series and the Gibbs phenomenon
,”
Am. J. Phys
60
,
425
429
(
1992
).
39.
C. R.
Vogel
,
Computational Methods for Inverse Problems
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
2002
).
40.
P. C.
Hansen
, “
Deconvolution and regularization with Toeplitz matrices
,”
Numer. Algorithms
29
,
323
378
(
2002
).
41.
W.
Stefan
, “
Total variation regularization for linear Ill-posed inverse problems
,” Ph.D. thesis,
Arizona State University
,
2008
.
42.
G.
Cowan
,
Statistical Data Analysis
(
Oxford U.P.
,
Clarendon Press, Oxford
,
1998
), Chap. 11.
43.
G. C.
Goodwin
,
S. F.
Graebe
, and
M. E.
Salgado
,
Control System Design
(
Prentice Hall
,
Upper Saddle River, NJ
,
2001
).
44.
M.
Faraday
, “
On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces
,”
Phil. Trans. R. Soc. Lond.
121
,
299
340
(
1831
).
45.
A.
Hasan Nayfeh
and
D. T.
Mook
,
Nonlinear Oscillations
(
John Wiley & Sons, Inc.
,
New York
,
1995
).
46.
D.
Pietschmann
,
R.
Stannarius
,
C.
Wagner
, and
T.
John
, “
Faraday waves under time-reversed excitation
,”
Phys. Rev. Lett.
110
,
094503
(
2013
).
47.

The associated amplifier PA100E from the company was replaced to achieve a better signal to noise ratio of 100 dB and an extended bandwidth of 5 Hz up to 50 kHz.

48.
Creative Soundblaster Live! 24 Bit, <support.creative.com>.
49.
G.
Heinzel
,
A.
Rüdiger
, and
R.
Schilling
, “
Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new flat-top windows
,” <http://www.rssd.esa.int/SP/LISAPATHFINDER/docs/Data_Analysis/GH_FFT.pdf> (
2002
).
50.
Lock-In Amplifier
, “
Stanford research, sr830
,” <http://www.thinksrs.com/products/SR810830.htm>.
51.
F. J.
Harris
, “
Use of windows for harmonic-analysis with discrete Fourier-transform
,”
Proc. IEEE
66
,
51
83
(
1978
).
52.
National Instruments
, “
AD/DA Converter NI 6035E
,” <http://sine.ni.com/nips/cds/view/p/lang/en/nid/11915>.
53.
Y.
Li
and
J.
Bechhoefer
, “
Feedforward control of a piezoelectric flexure stage for afm
,”
American Control Conference, IEEE Xplore
(
2008
), pp.
2703
2709
.
54.
K. S.
Kim
and
Q.
Zou
, “
Model-less inversion-based iterative control for output tracking: Piezo actuator example
,”
American Control Conference IEEE Xplore
(
2008
), pp.
2710
2715
.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.