The phenomenon of electronic wave localization through disorder remains an important area of fundamental and applied research. Localization of all wave phenomena, including light, is thought to exist in a restricted one-dimensional geometry. We present here a series of experiments to illustrate, using a straightforward experimental arrangement and approach, the localization of light in a quasi-one-dimensional physical system. In the experiments, reflected and transmitted light from a stack of glass slides of varying thickness reveals an Ohm's law type behavior for small thicknesses, and evolution to exponential decay of the transmitted power for larger thicknesses. For larger stacks of slides, a weak departure from one-dimensional behavior is also observed. The experiment and analysis of the results, showing many of the essential features of wave localization, is relatively straightforward, economical, and suitable for laboratory experiments at an undergraduate level.

1.
P. W.
Anderson
, “
Absence of diffusion in certain random lattices
,”
Phys. Rev.
109
,
1492
1505
(
1958
).
2.
P.
Sheng
,
Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena
(
Academic Press
,
San Diego
,
1995
).
3.
E.
Akkermans
and
G.
Montambaux
,
Mesoscopic Physics of Electrons and Photons
(
Cambridge U.P.
,
Cambridge, UK
,
2007
).
4.
P. W.
Anderson
, “
More is different
,”
Science
177
,
393
396
(
1972
).
5.
H.
Hu
,
A.
Strybulevych
,
J. H.
Page
,
S. E.
Skipetrov
, and
B. A.
van Tiggelen
, “
Localization of ultrasound in a three-dimensional elastic network
,”
Nat. Phys.
4
,
945
948
(
2008
).
6.
C. A.
Müller
and
Dominique
Delande
, “
Disorder and interference: Localization phenomena
,”
Les Houches 2009 – Session XCI: Ultracold Gases and Quantum Information
, edited by
C.
Miniatura
 et al. (
Oxford University Press
,
Oxford
,
2011
), Chap. 9.
7.
J.
Billy
,
V.
Josse
,
Z.
Zuo
,
A.
Bernard
,
B.
Hambrecht
,
P.
Lugan
,
D.
Clement
,
L.
Sanches-Palencia
,
P.
Bouyer
, and
A.
Aspect
, “
Direct observation of Anderson localization of matter waves in controlled disorder
,”
Nature
453
,
891
894
(
2008
).
8.
G.
Roati
,
C.
D'Errico
,
L.
Fallani
,
M.
Fattori
,
C.
Fort
,
M.
Zaccanti
,
G.
Modugno
,
M.
Modugno
, and
M.
Inguscio
, “
Anderson localization of a non-interacting Bose-Einstein condensate
,”
Nature
453
,
895
898
(
2008
).
9.
S. S.
Kondov
,
W. R.
McGehee
,
J. J.
Zirbel
, and
B.
DeMarco
, “
Three-dimensional Anderson localization of ultracold matter
,”
Science
334
,
66
68
(
2011
).
10.
A. A.
Chabanov
,
M.
Stoytchev
, and
A. Z.
Genack
, “
Statistical signatures of photon localization
,”
Nature
404
,
850
853
(
2000
).
11.
D. S.
Wiersma
,
P.
Bartolini
,
A.
Lagendijk
, and
R.
Righini
, “
Localization of light in a disordered medium
,”
Nature
390
,
671
673
(
1997
).
12.
M.
Storzer
,
P.
Gross
,
C. M.
Aegerter
, and
G.
Maret
, “
Observation of the critical regime near Anderson localization of light
,”
Phys. Rev. Lett.
96
,
063904
(
2006
).
13.
A.
Lagendijk
,
B.
van Tiggelen
, and
D. S.
Wiersma
, “
Fifty years of Anderson localization
,”
Phys. Today
62
(
8
),
24
29
(
2009
).
14.
T.
Brandes
and
S.
Kettemann
,
The Anderson Transition and its Ramifications; Localisation, Quantum Interference, and Interactions
(
Springer Verlag
,
Berlin
,
2003
).
15.
M.
Segev
,
Y.
Silberberg
, and
D. N.
Christodoulides
, “
Anderson localization of light
,”
Nat. Photonics
7
,
197
204
(
2013
).
16.
Y.
Kuga
and
A.
Ishimaru
, “
Retroreflection from a dense distribution of theoretical particles
,”
J. Opt. Soc. Am.
1
,
831
835
(
1984
).
17.
M.
van Albada
and
A.
Lagendijk
, “
Observation of weak localization of light in a random medium
,”
Phys. Rev. Lett.
55
,
2696
2699
(
1985
).
18.
R.
Corey
,
M.
Kissner
, and
P.
Saulnier
, “
Coherent backscattering of light
,”
Am. J. Phys.
63
,
560
564
(
1995
).
19.
D. F.
Holcomb
, “
More light on coherent backscattering
,”
Am. J. Phys.
64
,
109
(
1996
).
20.
A. D.
Beyer
,
M.
Koesters
,
K. G.
Libbrecht
, and
E. D.
Black
, “
Macroscopic coherence effects in a mesoscopic system: Localization of thin silver films
,”
Am. J. Phys.
73
,
1014
1019
(
2005
).
21.
E.
Hecht
and
A.
Zajec
,
Optics
(
Addison-Wesley
,
Reading, MA
,
1974
).
22.
M. V.
Berry
and
S.
Klein
, “
Transparent mirrors: Rays, waves, and localization
,”
Eur. J. Phys.
18
,
222
228
(
1997
).
23.

In Ohm's Law, the electrical resistance is proportional to the sample length. In a similar way, the normalized resistance for optical transmission is proportional to the sample length, and inversely proportional to the optical mean free path.

24.
Y.
Lu
,
C.
Miniatura
, and
B. G.
Englert
, “
Average transmission probability of a random stack
,”
Eur. J. Phys.
31
,
47
55
(
2010
).
25.
P. B.
Allen
and
J.
Kelner
, “
Evolution of a vibrational wave packet on a disordered chain
,”
Am. J. Phys.
66
,
497
506
(
1998
).
26.
F.
Dominguez-Adame
and
V. A.
Malyshev
, “
A simple approach to Anderson localization in one dimensional disordered lattices
,”
Am. J. Phys.
72
,
226
230
(
2004
).
27.
J.
Bertolotti
,
S.
Gottardo
,
D. S.
Wiersma
,
M.
Ghulinyan
, and
L.
Pavesi
, “
Optical necklace states in Anderson localized 1D systems
,”
Phys. Rev. Lett.
94
,
113903
(
2005
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.