This paper presents three approaches to providing undergraduate students with a conceptual understanding of the Boltzmann distribution: (1) a simple logical argument for why it is described by an exponential function, (2) a computational experiment to demonstrate and validate this result, and (3) a computer simulation of a laboratory experiment that allows this result to be observed. Together, these three perspectives complement one another to broaden students' understanding and prepare them for more formal, complete treatments. These examples illustrate how the convergence of theoretical, computational, and experimental approaches, applied to a single physical problem, contribute to a deeper and more unified understanding of statistical systems than could otherwise be had using any one of the methods alone.

1.
R. P.
Feynman
,
Statistical Mechanics: A Set Of Lectures
, 2nd ed. (
Westview Press
,
Boulder, CO
,
1998
).
2.

More precisely, this is the probability of the system occupying a particular microstate with this value of energy. If there is more than one microstate with the same energy, then the probability of the system having this energy is the product of this probability times the number of microstates that have that energy (i.e., the “degeneracy”).

3.

Feynman used Q for the partition function in 1972, but today most sources use Z, as we do here.

4.
R. K.
Pathria
,
Statistical Mechanics
, 3rd ed. (
Academic Press
,
Boston
,
2007
).
5.
F.
Reif
,
Fundamentals of Statistical and Thermal Physics
(
Waveland Press
,
Long Grove, IL
,
2008
).
6.
L. E.
Reichl
,
A Modern Course in Statistical Physics
, 3rd ed. (
Wiley-VCH
,
Weihheim
,
2009
).
7.
R. H.
Swendsen
,
An Introduction to Statistical Mechanics and Thermodynamics
(
Oxford U.P.
,
New York
,
2012
).
8.
F. T.
Wall
, “
Alternative derivations of the statistical mechanical distribution laws
,”
Proc. Nat. Acad. Sci.
68
,
1720
1724
(
1971
).
9.
G. D.
Hoyt
, “
A more concise derivation of the Maxwell distribution
,”
Am. J. Phys.
39
,
845
845
(
1971
).
10.
R. C.
Dunbar
, “
Deriving the Maxwell distribution
,”
J. Chem. Ed.
59
,
22
23
(
1982
).
11.
D. K.
Russell
, “
The Boltzmann distribution
,”
J. Chem. Ed.
73
,
299
300
(
1996
).
12.
S. A. C.
McDowell
, “
A simple derivation of the Boltzmann distribution
,”
J. Chem. Ed.
76
,
1393
1394
(
1999
).
13.
R. B.
Shirts
and
M. R.
Shirts
, “
Deviations from the Boltzmann distribution in small microcanonical quantum systems: Two approximate one-particle energy distributions
,”
J. Chem. Phys.
117
,
5564
5575
(
2002
).
14.
C. W.
David
, “
Boltzmann without Lagrange
,”
J. Chem. Ed.
83
,
1695
1697
(
2006
).
15.
R.
López-Ruiz
and
X.
Calbet
, “
Derivation of the Maxwellian distribution from the microcanonical ensemble
,”
Am. J. Phys.
75
,
752
753
(
2007
).
16.
V.
Gurarie
, “
The equivalence between the canonical and microcanonical ensembles when applied to large systems
,”
Am. J. Phys.
75
,
747
751
(
2007
).
17.
R.
López-Ruiz
,
J.
Sañudo
, and
X.
Calbet
, “
A geometrical derivation of the Boltzmann factor
,”
Am. J. Phys.
76
,
780
781
(
2008
).
18.
A.
Walstad
, “
On deriving the Maxwellian velocity distribution
,”
Am. J. Phys.
81
,
555
557
(
2013
).
19.
M.
Campisi
and
D. H.
Kobe
, “
Derivation of the Boltzmann principle
,”
Am. J. Phys.
78
,
608
615
(
2010
).
20.
M. A. M.
Versteegh
and
D.
Dieks
, “
The Gibbs paradox and the distinguishability of identical particles
,”
Am. J. Phys.
79
,
741
746
(
2011
).
21.
N. J.
Giordano
and
H.
Nakanishi
,
Computational Physics
, 2nd ed. (
Addison-Wesley
,
Upper Saddle River, NJ
,
2005
).
22.
H.
Gould
,
J.
Tobochnik
, and
W.
Christian
,
An Introduction to Computer Simulation Methods: Applications to Physical Systems
, 3rd ed. (
Addison-Wesley
,
San Francisco
,
2006
).
23.
R. H.
Landau
,
J.
Páez
, and
C. C.
Bordeianu
,
A Survey of Computational Physics: Introductory Computational Science
(
Princeton U.P.
,
Princeton
,
2008
).
24.
M. A.
Omar
,
Elementary Solid State Physics: Principles and Applications
, 4th ed. (
Addison-Wesley
,
Reading, MA
,
1994
).
25.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
Wiley
,
Hoboken, NJ
,
2005
).
26.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Holt, Rinehart and Winston
,
New York
,
1976
).
27.
A. B.
Downey
,
Think Bayes; Bayesian Statistics Made Simple
(
O'Reilly Media
,
Sebastopol, CA
,
2013
), <http://greenteapress.com/thinkbayes/thinkbayes.pdf>.
28.
A similar argument was also made on page 312 of
S. O.
Kasap
,
Principles of Electronic Materials and Devices
, 3rd ed. (
McGraw-Hill
,
New York
,
2006
).
29.
For a proof that Eq. (8) is indeed a unique solution of Eq. (7), provided that we restrict the possible solutions to continuous, real-valued functions—i.e., physically sensible solutions—see Exercise 18.46 from
E.
Hewitt
and
K.
Stromberg
,
Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable
(
Springer
,
Berlin
,
1965
).
30.

For systems with continuous degrees of freedom—e.g., an ideal gas—this sum is replaced with an integral.

31.
L.
Engelhardt
and
N.
Chonacky
, “
Boltzmann distribution from a microcanonical ensemble model
” (Java software), <http://www.compadre.org/osp/items/detail.cfm?ID=11563> (
2011
).
32.
W.
Christian
and
F.
Esquembre
, “
Modeling Physics with Easy Java Simulations
,”
Phys. Teach.
45
,
475
480
(
2007
);
L.
Engelhardt
, “
Introduction to EJS Video Tutorial
,” <http://www.compadre.org/OSP/tutorials/EJS_Tutorial/> (
2010
).
33.
See supplementary material at http://dx.doi.org/10.1119/1.4923204 for all of the simulations and source code associated with this article.
34.
V. M.
Yakovenko
and
J. B.
Rosser
, “
Statistical mechanics of money, wealth, and income
,”
Rev. Mod. Phys.
81
,
1703
1725
(
2009
).
35.
H.
Gould
and
J.
Tobochnik
,
Statistical and Thermal Physics: With Computer Applications
(
Princeton U.P.
,
Princeton, NJ
,
2010
).
36.
T. A.
Moore
and
D. V.
Schroeder
, “
A different approach to introducing statistical mechanics
,”
Am. J. Phys.
65
,
26
36
(
1997
).
37.
D. V.
Schroeder
,
An Introduction to Thermal Physics
(
Addison-Wesley
,
San Francisco
,
1999
).
38.
J. J.
Prentis
, “
Experiments in statistical mechanics
,”
Am. J. Phys.
68
,
1073
1083
(
2000
).
39.
This is known as the “ergodic hypothesis,” which allows us to relate the parameters of the experimental system to the parameters in the statistical distribution, p(E). See
P.
Ehrenfest
and
T.
Ehrenfest
,
The Conceptual Foundations of the Statistical Approach in Mechanics
(
Dover
,
New York, NY
,
1990
), pp.
21
26
;
Shang-keng
Ma
,
Statistical Mechanics
(
World Scientific
,
Philadelphia, PA
,
1985
), pp.
440
445
;
C. J.
Thompson
,
Mathematical Statistical Mechanics
(
Macmillan
,
New York, NY
,
1972
), pp.
214
217
.
40.
L.
Bao
and
E. F.
Redish
, “
Understanding probabilistic interpretations of physical systems: A prerequisite to learning quantum physics
,”
Am. J. Phys.
70
,
210
217
(
2002
).
41.
To model the bath using random impulses would require that a damping force also be included to keep the energy from growing indefinitely. Such a process—referred to as “Langevin dynamics”—would be more physically realistic, but it would lack the simplicity of the method presented here. See
D. S.
Lemons
and
A.
Gythiel
, “
Paul Langevin's 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]
,”
Am. J. Phys.
65
,
1079
1081
(
1997
).
42.
L.
Engelhardt
and
M.
Lopez del Puerto
, “
Boltzmann machine model
” (Java software), <http://www.compadre.org/osp/items/detail.cfm?ID=13330> (
2014
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.