We consider radiation reaction and energy conservation in classical electromagnetism. We first treat the well-known problem of energy accounting during radiation from a uniformly accelerating particle. This gives rise to the following paradox: when the self-force vanishes, the system providing the applied force does only enough work to give the particle its kinetic energy—so where does the energy that is eventually radiated away come from? We answer this question using a modern treatment of radiation reaction and self-force, as it appears in the expression due to Eliezer and Ford and O'Connell. We clarify the influence of the Schott force, and we find that the radiated power is 2q2a0·f0/(3mc3), which differs from Larmor's formula. Finally, we present a simple and highly visual argument that enables one to track the radiated energy without the need to appeal to the far field in the distant future (the “wave zone”).

1.
G. A.
Schott
, “
On the motion of the Lorentz electron
,”
Philos. Mag.
29
,
49
69
(
1915
).
2.
J.
Schwinger
,
L. L.
DeRaad
, Jr.
,
K. A.
Milton
,
W.-Y.
Tsai
, and
J.
Norton
,
Classical Electrodynamics
(
Westview Press
,
Boulder, CO
,
1998
).
3.
T.
Fulton
and
F.
Rohrlich
, “
Classical radiation from a uniformly accelerated charge
,”
Ann. Phys.
9
,
499
517
(
1960
).
4.
E.
Eriksen
and
O.
Gr on
, “
Electrodynamics of hyperbolically accelerated charges II. Does a charged particle with hyperbolic motion radiate?
,”
Ann. Phys.
286
,
343
372
(
2000
).
5.
F.
Rohrlich
,
Classical Charged Particles
, 3rd ed. (
Addison-Wesley
,
Reading, MA
,
1990
).
6.
G. W.
Ford
and
R. F.
O'Connell
, “
Radiation reaction in electrodynamics and the elimination of runaway solutions
,”
Phys. Lett. A
157
,
217
220
(
1991
).
7.
D. A.
Burton
and
A.
Noble
, “
Aspects of electromagnetic radiation reaction in strong fields
,”
Contemp. Phys.
55
,
110
121
(
2014
), <>.
8.
A. M.
Steane
, “
Reduced-order Abraham-Lorentz-Dirac equation and the consistency of classical electromagnetism
,”
Am. J. Phys.
83
,
256
262
(
2015
), <>.
9.
A. M.
Steane
, “
Nonexistence of the self-accelerating dipole and related questions
,”
Phys. Rev. D
89
,
125006
(
2014
); e-print arXiv:1311.5798[gr-qc], <http://link.aps.org/doi/10.1103/PhysRevD.89.125006>.
10.
G. W.
Ford
and
R. F.
O'Connell
, “
Total power radiated by an accelerated charge
,”
Phys. Lett. A
158
,
31
32
(
1991
).
11.
F.
Intravaia
,
R.
Behunin
,
P. W.
Milonni
,
G. W.
Ford
, and
R. F.
O'Connell
, “
Consistency of a causal theory of radiative reaction with the optical theorem
,”
Phys. Rev. A
84
,
035801
(
2011
), <http://link.aps.org/doi/10.1103/PhysRevA.84.035801>.
12.
F.
Rohrlich
, “
Dynamics of a classical quasi-point charge
,”
Phys. Lett. A
303
,
307
310
(
2002
), <http://www.sciencedirect.com/science/article/pii/S0375960102013117>.
13.
J. A.
Heras
and
R. F.
O'Connell
, “
Generalization of the Schott energy in electrodynamic radiation theory
,”
Am. J. Phys.
74
,
150
153
(
2006
).
14.
V.
Hnizdo
, “
Comment on “Preacceleration without radiation: The nonexistence of preradiation phenomenon,” by J. A. Heras
,”
Am. J. Phys.
75
,
845
846
(
2007
).
15.
D. R.
Rowland
, “
Physical interpretation of the Schott energy of an accelerating point charge and the question of whether a uniformly accelerating charge radiates
,”
Eur. J. Phys.
31
,
1037
1051
(
2010
).
16.
F.
Rohrlich
, “
The self-force and radiation reaction
,”
Am. J. Phys.
68
,
1109
1112
(
2000
).
17.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1998
).
18.
A. M.
Steane
,
Relativity Made Relatively Easy
(
Oxford U.P.
,
Oxford
,
2012
).
19.
T.
Erber
, “
The classical theories of radiation reaction
,”
Fortschritte der Physik
9
,
343
392
(
1961
).
20.
D. G.
Boulware
, “
Radiation from a uniformly accelerated charge
,”
Ann. Phys.
124
,
169
188
(
1980
).
21.
C.
de Almeida
and
A.
Saa
, “
The radiation of a uniformly accelerated charge is beyond the horizon: A simple derivation
,”
Am. J. Phys.
74
,
154
158
(
2006
); e-print arXiv:physics/0508031.
22.
G. W.
Ford
and
R. F.
O'Connell
, “
Relativistic form of radiation reaction
,”
Phys. Lett. A
174
,
182
184
(
1993
).
23.
C. J.
Eliezer
, “
On the classical theory of particles
,”
Proc. R. Soc. London, Ser. A
194
,
543
555
(
1948
).
24.
L. D.
Landau
and
E. M.
Lifshitz
,
The Classical Theory of Fields
(
Pergamon
,
Oxford
,
1971
); (1st ed. (in Russian), 1941).
25.
C.
Teitelboim
, “
Splitting of the Maxwell tensor: Radiation reaction without advanced fields
,”
Phys. Rev. D
1
,
1572
1582
(
1970
), <http://link.aps.org/doi/10.1103/PhysRevD.1.1572>.
26.
O.
Heaviside
, “
Electromagnetic waves, the propagation of potential, and the electromagnetic effects of a moving charge, Part III
,”
The Electrician, Dec. 7
,
1988
, p. 147; see also O. Heaviside, Electrical Papers (1894), pp.
490
499
, <http://en.wikisource.org/wiki/Electromagnetic_effects_of_a_moving_charge>.
27.
G. W.
Ford
and
R. F.
O'Connell
, “
Structure effects on the radiation emitted from an electron
,”
Phys. Rev. A
44
,
6386
6387
(
1991
), <http://link.aps.org/doi/10.1103/PhysRevA.44.6386>.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.