The Sagnac effect is usually deemed to be a special-relativistic effect produced in an interferometer when the device is rotating. Two light beams traveling around the interferometer in opposite directions require different times of flight to complete their closed path, giving rise to a phase shift proportional to the angular velocity of the apparatus. Here, we show that the same result can be obtained in the absence of rotation, when there is relative motion (be it inertial or not) between the source/receiver of light and the interferometer. Our argument will use both a simple algebraic analysis and a plain geometric approach in flat spacetime. We present an explicit example to illustrate our point and briefly discuss other apparently correct interpretations of the Sagnac effect, including an analogy to the Aharonov-Bohm effect. Finally, we sketch a possible application of the non-rotational Sagnac effect.

1.
Georges
Sagnac
, “
Sur la propagation de la lumière dans un système en translation et sur l'aberration des étoiles
,”
C. R. Acad. Sci. Paris
141
,
1220
1223
(
1913
).
2.
Georges
Sagnac
, “
L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interféromètre en rotation uniforme
,”
C. R. Acad. Sci. Paris
157
,
708
710
(
1913
),
English translation in
Relativity in Rotating Frames
, edited by
G.
Rizzi
and
M. L.
Ruggiero
(
Kluwer
,
Dordrecht
,
2003
), pp.
5
7
.
3.
W. W.
Chow
 et al., “
The ring laser gyro
,”
Rev. Mod. Phys.
57
,
61
104
(
1985
).
4.
K. U.
Schreiber
and
J.-P. R.
Wells
, “
Large ring lasers for rotation sensing
,”
Rev. Sci. Instrum.
84
,
041101
041101-26
(
2013
).
5.
G. E.
Stedman
,
K. U.
Schreiber
, and
H. R.
Bilger
, “
On the detectability of the Lense-Thirring field from rotating laboratory masses using ring laser gyroscope interferometers
,”
Class. Quantum Grav.
20
,
2527
2540
(
2003
).
6.
F.
Bosi
 et al., “
Measuring gravitomagnetic effects by a multi-ring-laser gyroscope
,”
Phys. Rev. D
84
,
122002-1
23
(
2011
).
7.
M.
Allegrini
 et al., “
A laser gyroscope system to detect the gravito-magnetic effect on Earth
,”
J. Phys.: Conf. Ser.
375
,
062005-1
6
(
2012
).
8.
J. C.
Hafele
and
R. E.
Keating
, “
Around-the-world atomic clocks: Predicted relativistic time gains
,”
Science
177
(
4044
),
166
168
(
1972
).
9.
J. C.
Hafele
and
R. E.
Keating
, “
Around-the-world atomic clocks: Observed relativistic time gains
,”
Science
177
(
4044
),
168
170
(
1972
).
10.
R.
Schlegel
, “
Comments on the Hafele-Keating experiment
,”
Am. J. Phys.
42
,
183
187
(
1974
).
11.
R.
Anderson
,
H. R.
Bilger
, and
G. E.
Stedman
, “
Sagnac effect: A century of Earth-rotated interferometers
,”
Am. J. Phys.
62
,
975
985
(
1994
).
12.
Relativity in Rotating Frames
, edited by
G.
Rizzi
and
M. L.
Ruggiero
(
Kluwer
,
Dordrecht
,
2003
).
13.
A.
Zajac
,
H.
Sadowski
, and
S.
Licht
, “
Real fringes in the Sagnac and Michelson interferometers
,”
Am. J. Phys.
29
,
669
673
(
1961
).
14.
G. C.
Babcock
, “
The Sagnac interferometer
,”
Am. J. Phys.
30
,
311
(
1962
).
15.
K.
Kassner
, “
Ways to resolve Selleri's paradox
,”
Am. J. Phys.
80
,
1061
1066
(
2012
).
16.
R.
Wang
,
Y.
Zheng
,
A.
Yao
, and
D.
Langley
, “
Modified Sagnac experiment for measuring travel-time difference between counter-propagating light beams in a uniformly moving fiber
,”
Phys. Lett. A
312
,
7
10
(
2003
).
17.
R.
Wang
,
Y.
Zheng
, and
A.
Yao
, “
Generalized Sagnac effect
,”
Phys. Rev. Lett.
93
,
143901-1
3
(
2004
).
18.
E. J.
Post
, “
Sagnac effect
,”
Rev. Mod. Phys.
39
,
475
493
(
1967
).
19.

This would have been practically impossible in Sagnac's time but is feasible today with modern optical fibers, as it is done in commercial gyrolasers.

20.

Actually the planarity is not needed.

21.
A.
Tartaglia
, “
Geometric treatment of the gravitomagnetic clock effect
,”
Gen. Relativ. Grav.
32
,
1745
1756
(
2000
).
22.

In the most general case is the integration path and, using arbitrary coordinates, the formula would be Δt=2(g0i/g00)dxi (see, e.g., Ref. 23).

23.
M. L.
Ruggiero
and
A.
Tartaglia
, “
A note on the Sagnac effect and current terrestrial experiments
,”
Eur. Phys. J. Plus
129
,
126-1
126-5
(
2014
).
24.
N.
Ashby
, “
The Sagnac effect in the GPS
,” in
Relativity in Rotating Frames
, edited by
G.
Rizzi
and
M. L.
Ruggiero
(
Kluwer
,
Dordrecht
,
2003
), pp.
11
28
.
25.
G. E.
Stedman
, “
Ring-laser tests of fundamental physics and geophysics
,”
Rep. Prog. Phys.
60
,
615
688
(
1997
).
26.
E. G.
Harris
, “
The gravitational Aharonov Bohm effect with photons
,”
Am. J. Phys.
64
,
378
383
(
1996
).
27.
G.
Rizzi
and
M. L.
Ruggiero
, “
Space geometry of rotating platforms: An operational approach
,”
Found. Phys.
32
,
1525
1556
(
2002
).
28.
K.
Kassner
, “
Spatial geometry of the rotating disk and its non-rotating counterpart
,”
Am. J. Phys.
80
,
772
781
(
2012
).
29.
G.
Rizzi
,
M. L.
Ruggiero
, and
A.
Serafini
, “
Synchronization Gauges and the principles of special relativity
,”
Found. Phys.
34
,
1835
1887
(
2005
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.