Einstein's perihelion advance formula can be given a geometric interpretation in terms of the curvature of the ellipse. The formula can be obtained by splitting the constant term of an auxiliary polar equation for an elliptical orbit into two parts that, when combined, lead to the expression of this relativistic effect. Using this idea, we develop a general method for dealing with orbital precession in the presence of central perturbing forces, and apply the method to the determination of the total (relativistic plus Newtonian) secular perihelion advance of the planet Mercury.

1.
A.
Einstein
,
Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie, Sitzungsberichte der Kniglich Preuischen Akademie der Wissenschaften
(
Seite
,
Berlin
,
1915
), pp.
831
839
;
The Collected Papers of Albert Einstein
, edited by
A. J.
Knox
,
M. J.
Klein
, and
R.
Schulmann
(
Princeton U. P.
,
Princeton, NJ
1996
), Vol. 6, Doc. 24, pp.
112
116
.
2.
M. M.
D'Eliseo
, “
Higher-order corrections to the relativistic perihelion advance and the mass of binary pulsars
,”
Astrophys. Space Sci.
332
,
121
128
(
2011
).
3.
B.
Davies
, “
Elementary theory of perihelion precession
,”
Am. J. Phys.
51
,
909
911
(
1983
).
4.
N.
Gauthier
, “
Periastron precession in general relativity
,”
Am. J. Phys.
55
,
85
86
(
1987
).
5.
T.
Garavaglia
, “
The Runge-Lenz vector and Einstein perihelion precession
,”
Am. J. Phys.
55
,
164
165
(
1987
).
6.
C.
Farina
and
M.
Machado
, “
The Rutherford cross section and the perihelion shift of Mercury with the Runge-Lenz vector
,”
Am. J. Phys.
55
,
921
923
(
1987
).
7.
D. R.
Stump
, “
Precession of the perihelion of Mercury
,”
Am. J. Phys.
56
,
1097
1098
(
1988
).
8.
K. T.
McDonald
, “
Right and wrong use of the Lenz vector for non-Newtonian potentials
,”
Am. J. Phys.
58
,
540
542
(
1990
).
9.
K.
Doggett
, “
Comment on ‘Precession of the perihelion of Mercury,’ by Daniel R. Stump
,”
Am. J. Phys.
59
,
851
(
1991
).
10.
S.
Cornbleet
, “
Elementary derivation of the advance of the perihelion of a planetary orbit
,”
Am. J. Phys.
61
,
650
651
(
1993
).
11.
B.
Dean
, “
Phase-plane analysis of perihelion precession and Scwarzschild orbital dynamics
,”
Am. J. Phys.
67
,
78
86
(
1999
).
12.
D. R.
Brill
and
D.
Goel
, “
Light bending and perihelion precession: A unified approach
,”
Am. J. Phys.
67
,
316
319
(
1999
).
13.
M. M.
D'Eliseo
, “
The first-order orbital equation
,”
Am. J. Phys.
75
,
352
355
(
2007
).
14.
T. J.
Lemmon
and
A. R.
Mondragon
, “
Alternative derivation of the relativistic contribution to perihelic precession
,”
Am. J. Phys.
77
,
890
893
(
2009
).
15.
N.
Grossmann
,
The Sheer Joy of Celestial Mechanics
(
Birkhäuser, Boston
,
MA
,
1996
), p.
32
.
16.

We shall consider cases in which the independent variable is u, v, and κ. Sometimes a primed expression can also mean a derivative evaluated at some point. This practice, here introduced for a graphical cleanliness of the formulas, while potentially confusing, actually causes no problems because the context always makes clear what is intended.

17.
R.
d'Inverno
,
Introducing Einstein's Relativity
(
Oxford U. P.
,
New York, NY
,
2001
), p.
194
.
18.
The Mathematical Papers of Isaac Newton
, edited by
D. T.
Whiteside
(
Cambridge U. P.
,
Cambridge
,
2008
), Vol.
III
, 1670–1673,
169
173
.
19.
K.
Kendig
,
Conics
(
The Mathematical Association of America
,
Washington, DC
,
2005
), p.
243
.
20.
V. G.
Szebehely
and
H.
Mark
,
Adventures in Celestial Mechanics
, 2nd ed. (
Wiley
,
Hoboken
, NJ,
1998
), Chap. 11, pp.
221
245
.
21.
M. M.
D'Eliseo
, “
The quasi-elliptic motion of the Moon
,”
Chin. J. Phys.
50
,
720
731
(
2012
).
22.
C. D.
Olds
,
Continued Fractions
(
Random House
,
New York
, NY,
1963
).
23.
G.
Clemence
, “
The relativity effects in planetary motions
,”
Rev. Mod. Phys.
19
,
361
364
(
1947
).
24.
M. M.
D'Eliseo
, “
Central forces and secular perihelion motion
,”
Can. J. Phys.
85
,
1045
1054
(
2007
).
25.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
, 3rd ed. (
Addison Wesley
,
San Francisco
, CA,
2002
), pp.
536
538
.
26.
A.
Hall
, “
A suggestion in the theory of Mercury
,”
Astron. J.
XIV
,
49
51
(
1894
).
27.
N. T.
Roseveare
,
Mercury's perihelion from Le Verrier to Einstein
(
Clarendon Press
,
Oxford
,
1982
).
28.

The residue secular effect would be of order nn. Therefore it can be neglected.

29.
P.
Van de Kamp
,
Elements of Astromechanics
(
Freeman
,
San Francisco, CA
,
1964
), p.
65
.
30.
M. M.
D'Eliseo
, “
Orbital averages and the secular variations of the orbits
,”
S. Elmo Obs. Technical Report
,
1999
, available at
<
http://vixra.org/pdf/1305.0100v1.pdf>.
31.
C. D.
Murray
and
S. F.
Dermott
,
Solar System Dynamics
(
Cambridge U. P.
,
New York, NY
,
1999
), Appendix A, pp.
526
530
.
32.

In Ref. 31, p. 294, ω depends on time, and so the angular mean motion n multiplies the constants A and B. Since the relation between θ and t is θ=nt+periodicalterms (Ref. 30, p. 41), it is evident that changing, in the equation of the secular motion, the variable from t to θ leaves the two constants A and B unchanged except that the factor n disappears.

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.