An elementary proof of Bertrand's theorem is given by examining the radial orbit equation, without needing to solve complicated equations or integrals.

1.
J.
Bertrand
, “
Thórm̀e relatif au mouvement dun point attiré vers un centre fixe
,”
C.R. Acad. Sci.
77
,
849
853
(
1873
).
2..
F. C.
Santos
,
V.
Soares
, and
A. C.
Tort
, “
An English translation of Bertrand's theorem
,”
Latin-Am. J. Phys. Educ.
5
,
694
696
(
2011
).
3.
D. F.
Greenberg
, “
Accidental degeneracy
,”
Am. J. Phys.
34
,
1101
1109
(
1966
).
4.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
(
Springer-Verlag
,
New York
,
1978
).
5.
J. L.
Castro-Quilantán
,
J. L. Del
Río-Correa
, and
M. A. R.
Medina
, “
Alternative proof of Bertrand's theorem using a phase space approach
,”
Rev. Mex. Fís.
42
,
867
877
(
1996
).
6.
L. S.
Brown
, “
Forces giving no orbit precession
,”
Am. J. Phys.
46
,
930
931
(
1978
).
7.
H.
Goldstein
,
Classical Mechanics
(
Addison Wesley
,
New York
,
1981
), pp.
601
605
.
8.
Y.
Zarmi
, “
The Bertrand theorem revisited
,”
Am. J. Phys.
70
,
446
449
(
2002
).
9.
A.
Fasano
and
S.
Marni
,
Analytic Mechanics—An Introduction
(
Oxford U.P.
,
Oxford, England
,
2006
).
10.
Y.
Tikochinsky
, “
A simplified proof of Bertrand's theorem
,”
Am. J. Phys.
56
,
1073
1075
(
1988
).
11.
Y.
Grandati
,
A.
Bérard
, and
F.
Ménas
, “
Inverse problem and Bertrand's theorem
,”
Am. J. Phys.
76
,
782
787
(
2008
).
12.
F.
Santos
,
V.
Soares
, and
A.
Tort
, “
Determination of the Apsidal Angle and Bertrand's theorem
,”
Phys. Rev. E
,
79
,
036605-1–6
(
2009
).
13.
R. P.
Rartínez-y-Romero
,
H. N.
Núñez-Yépez
, and
A. L.
Salas-Brito
, “
Closed orbits and constants of motion in classical mechanics
,”
Eur. J. Phys.
13
,
26
31
(
1992
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.