An elementary proof of Bertrand's theorem is given by examining the radial orbit equation, without needing to solve complicated equations or integrals.
References
1.
J.
Bertrand
, “Thórm̀e relatif au mouvement dun point attiré vers un centre fixe
,” C.R. Acad. Sci.
77
, 849
–853
(1873
).2..
F. C.
Santos
, V.
Soares
, and A. C.
Tort
, “An English translation of Bertrand's theorem
,” Latin-Am. J. Phys. Educ.
5
, 694
–696
(2011
).3.
D. F.
Greenberg
, “Accidental degeneracy
,” Am. J. Phys.
34
, 1101
–1109
(1966
).4.
V. I.
Arnold
, Mathematical Methods of Classical Mechanics
(Springer-Verlag
, New York
, 1978
).5.
J. L.
Castro-Quilantán
, J. L. Del
Río-Correa
, and M. A. R.
Medina
, “Alternative proof of Bertrand's theorem using a phase space approach
,” Rev. Mex. Fís.
42
, 867
–877
(1996
).6.
L. S.
Brown
, “Forces giving no orbit precession
,” Am. J. Phys.
46
, 930
–931
(1978
).7.
8.
Y.
Zarmi
, “The Bertrand theorem revisited
,” Am. J. Phys.
70
, 446
–449
(2002
).9.
A.
Fasano
and S.
Marni
, Analytic Mechanics—An Introduction
(Oxford U.P.
, Oxford, England
, 2006
).10.
Y.
Tikochinsky
, “A simplified proof of Bertrand's theorem
,” Am. J. Phys.
56
, 1073
–1075
(1988
).11.
Y.
Grandati
, A.
Bérard
, and F.
Ménas
, “Inverse problem and Bertrand's theorem
,” Am. J. Phys.
76
, 782
–787
(2008
).12.
F.
Santos
, V.
Soares
, and A.
Tort
, “Determination of the Apsidal Angle and Bertrand's theorem
,” Phys. Rev. E
, 79
, 036605-1–6
(2009
).13.
R. P.
Rartínez-y-Romero
, H. N.
Núñez-Yépez
, and A. L.
Salas-Brito
, “Closed orbits and constants of motion in classical mechanics
,” Eur. J. Phys.
13
, 26
–31
(1992
).© 2015 American Association of Physics Teachers.
2015
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.