It is widely believed that classical electromagnetism is either unphysical or inconsistent, owing to pathological behavior when self-force and radiation reaction are non-negligible. We argue that there is no inconsistency as long as it is recognized that certain types of charge distribution are simply impossible, such as, for example, a point particle with finite charge and finite inertia. This is owing to the fact that negative inertial mass is an unphysical concept in classical physics. It remains useful to obtain an equation of motion for small charged objects that describes their motion to good approximation without requiring knowledge of the charge distribution within the object. We give a simple method to achieve this, leading to a reduced-order form of the Abraham-Lorentz-Dirac equation, essentially as proposed by Eliezer, Landau, and Lifshitz and derived by Ford and O'Connell.

1.
J. S.
Nodvik
, “
A covariant formulation of classical electrodynamics for charges of finite extension
,”
Ann. Phys
28
,
225
319
(
1964
).
2.
V.
Hnizdo
, “
The Lorentz-Dirac equation, Lienard-Wiechart potentials, and radiation by a system of uniformly circling charges
,”
Phys. Lett. A
129
,
426
428
(
1988
).
3.
A. D.
Yaghjian
,
Relativistic Dynamics of a Charged Sphere
, 2nd ed. (
Springer-Verlag
,
Berlin
,
2006
).
4.
F.
Rohrlich
, “
The dynamics of a charged sphere and the electron
,”
Am. J. Phys.
65
,
1051
1056
(
1997
).
5.
F.
Rohrlich
, “
The self-force and radiation reaction
,”
Am. J. Phys.
68
,
1109
1112
(
2000
).
6.
A.
Gupta
and
T.
Padmanabhan
, “
Radiation from a charged particle and radiation reaction reexamined
,”
Phys. Rev. D
57
,
7241
7250
(
1998
).
7.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1998
).
8.
P.
Caldirola
, “
A new model of classical electron
,”
Nuovo Cimento
3
(
Supplemento 2
),
297
343
(
1956
).
9.
J.
Schwinger
, “
Electromagnetic mass revisited
,”
Found. Phys.
13
,
373
383
(
1983
).
10.
R.
Medina
, “
Radiation reaction of a classical quasi-rigid extended particle
,”
J. Phys. A
39
,
3801
3816
(
2006
), e-print: arXiv:physics/0508031.
11.
D. J.
Griffiths
,
T. C.
Proctor
, and
D. F.
Schroeter
, “
Abraham–Lorentz versus Landau–Lifshitz
,”
Am. J. Phys.
78
,
391
402
(
2010
).
12.
A. D.
Yaghjian
, “
Absence of a consistent classical equation of motion for a mass-renormalized point charge
,”
Phys. Rev. E
78
,
046606-1
12
(
2008
).
13.
S. E.
Gralla
,
A. I.
Harte
, and
R. M.
Wald
, “
Rigorous derivation of electromagnetic self-force
,”
Phys. Rev. D
80
,
024031-1
22
(
2009
), arXiv:org/pdf/0905.2391.
14.
D. A.
Burton
and
A.
Noble
, “
Aspects of electromagnetic radiation reaction in strong fields
,”
Contemp. Phys.
55
,
110
121
(
2014
).
15.
D.
Bohm
and
M.
Weinstein
, “
The self-oscillations of a charged particle
,”
Phys. Rev.
74
,
1789
1798
(
1948
).
16.
T.
Erber
, “
The classical theories of radiation reaction
,”
Fortsch. Phys.
9
,
343
392
(
1961
).
17.
G. W.
Ford
and
R. F.
O'Connell
, “
Radiation reaction in electrodynamics and the elimination of runaway solutions
,”
Phys. Lett. A
157
,
217
220
(
1991
).
18.
K.
Wildermuth
, “
Zur physikalischen Interpretation der Elektronenselbstbeschleunigung
,”
Z. Naturf.
10A
,
450
459
(
1955
).
19.
H.
Spohn
,
Dynamics of Charged Particles and their Radiation Field
(
Cambridge U.P.
,
Cambridge
,
2004
), arXiv:math-ph/9908024.
20.
P.
Pearle
, “
Classical Electron Models
,” in
Electromagnetism: Paths to Research
, edited by
D.
Teplitz
(
Plenum
,
New York
,
1982
), pp.
211
295
.
21.
R.
Arnowitt
,
S.
Deser
, and
C. W.
Misner
, “
Gravitational-electromagnetic coupling and the classical self-energy problem
,”
Phys. Rev.
120
,
313
320
(
1960
).
22.
R.
Arnowitt
,
S.
Deser
, and
C. W.
Misner
, “
Interior Schwarzschild solutions and interpretation of source terms
,”
Phys. Rev.
120
,
321
324
(
1960
).
23.
P. A. M.
Dirac
, “
Classical theory of radiating electrons
,”
Proc. R. Soc. London, Ser. A
167
,
148
169
(
1938
).
24.
F.
Rohrlich
,
Classical Charged Particles
, 3rd ed. (
Addison-Wesley
,
Reading, MA
,
1990
).
25.
G. W.
Ford
and
R. F.
O'Connell
, “
Relativistic form of radiation reaction
,”
Phys. Lett. A
174
,
182
184
(
1993
).
26.
C. J.
Eliezer
, “
On the classical theory of particles
,”
Proc. R. Soc. London, Ser. A
194
,
543
555
(
1948
).
27.
L. D.
Landau
and
E. M.
Lifshitz
,
The Classical Theory of Fields
(
Pergamon
,
Oxford
,
1971
).
28.
S. V.
Bulanov
,
T. Z.
Esirkepov
,
M.
Kando
,
J. K.
Koga
, and
S. S.
Bulanov
, “
Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions)
,”
Phys. Rev. E
84
,
056605-1
10
(
2011
).
29.
A.
Zangwill
,
Modern Electrodynamics
(
Cambridge U.P.
,
Cambridge
,
2012
).
30.
R. F.
O'Connell
, “
The equation of motion of an electron
,”
Phys. Lett. A
313
,
491
497
(
2003
).
31.

I learned from V. Hnizdo that the Landau-Lifshiftz equation was in the 1948 edition of their book (ready for printing in 1947), but not the 1941 Russian first edition. It therefore only slightly predates Eliezer's work, and the latter gave a different and independent argument for substantially the same conclusion.

32.
R. F.
O'Connell
, “
Radiation reaction: General approach and applications, especially to electrodynamics
,”
Contemp. Phys.
53
,
301
313
(
2012
).
33.
A. M.
Steane
, “
Nonexistence of the self-accelerating dipole and related questions
,”
Phys. Rev. D
89
,
125006-1
13
(
2014
).
34.
E. J.
Moniz
and
D. H.
Sharp
, “
Radiation reaction in nonrelativistic quantum electrodynamics
,”
Phys. Rev. D
15
,
2850
2865
(
1977
).
35.
J.
Frenkel
and
R. B.
Santos
, “
The self-force of a charged particle in classical electrodynamics with a cutoff
,”
Int. J. Mod. Phys. B
13
,
315
324
(
1999
).
36.
S. M.
Blinder
, “
Structure and Self-Energy of the Electron
,”
Int. J. Quant. Chem.
90
,
144
147
(
2002
).
37.
A. M.
Steane
, “
The fields and self-force of a constantly accelerating spherical shell
,”
Proc. R. Soc. A
470
,
20130480
(
2013
), e-print arXiv:physics:1307.5011.
38.
F.
Intravaia
,
R.
Behunin
,
P. W.
Milonni
,
G. W.
Ford
, and
R. F.
O'Connell
, “
Consistency of a causal theory of radiative reaction with the optical theorem
,”
Phys. Rev. A
84
,
035801-1
4
(
2011
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.