We use the variational principle to obtain the wave functions of elliptical quantum dots under the influence of an external magnetic field. For the first excited states, whose wave functions have recently been mapped experimentally, we find a simple expression, based on a linear combination of the wave functions in the absence of a magnetic field. The results illustrate how a magnetic field breaks the x-y symmetry and mixes the corresponding eigenstates. The obtained eigenenergies agree well with those obtained by more involved analytical and numerical methods.

1.
K.
Bourzac
, “
Quantum dots go on display
,”
Nature
493
,
283
(
2013
).
2.
P. M.
Petroff
,
A.
Lorke
, and
A.
Imamoglu
, “
Epitaxially self-assembled quantum dots
,”
Phys. Today
54
(
5
),
46
52
(
2001
).
3.
S.
Tarucha
,
D. G.
Austing
,
T.
Honda
,
R. J.
van der Hage
, and
L. P.
Kouwenhoven
, “
Shell filling and spin effects in a few electron quantum dot
,”
Phys. Rev. Lett.
77
(
17
),
3613
3616
(
1996
).
4.
D.
Reuter
,
P.
Kailuweit
,
A. D.
Wieck
,
U.
Zeitler
,
O. S.
Wibbelhoff
,
C.
Meier
,
A.
Lorke
, and
J. C.
Maan
, “
Coulomb-interaction induced incomplete shell filling in the hole system of self-assembled InAs quantum dots
,”
Phys. Rev. Lett.
94
,
026808
(
2005
).
5.
H.
Drexler
,
D.
Leonard
,
W.
Hansen
,
J. P.
Kotthaus
, and
P. M.
Petroff
, “
Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots
,”
Phys. Rev. Lett.
73
(
16
),
2252
2255
(
1994
).
6.
B.
Alén
,
F.
Bickel
,
K.
Karrai
,
R. J.
Warburton
, and
P. M.
Petroff
, “
Stark-shift modulation absorption spectroscopy of single quantum dots
,”
Appl. Phys. Lett.
83
(
11
),
2235
2237
(
2003
).
7.
B. J.
Riel
, “
An introduction to self-assembled quantum dots
,”
Am. J. Phys.
76
(
8
),
750
757
(
2008
).
8.

Self-assembled quantum dots are not spherically symmetric. Rather, their size along one dimension (usually the direction of crystal growth) is much smaller than along the other two directions. Therefore, they can be well approximated as two-dimensional. For details, see, e.g., Ref. 7.

9.
W.
Lei
,
O.
Wibbelhoff
,
C.
Notthoff
,
B.
Marquardt
,
D.
Reuter
,
A. D.
Wieck
, and
A.
Lorke
, “
Magnetic-field-induced modification of the wave-functions in InAs quantum dots
,”
Physica E
40
(
6
),
1870
1872
(
2008
).
10.
W.
Lei
,
C.
Notthoff
,
J.
Peng
,
D.
Reuter
,
A.
Wieck
,
G.
Bester
, and
A.
Lorke
, “
‘Artificial Atoms’ in magnetic fields: wave-function shaping and phase-sensitive tunnelling
,”
Phys. Rev. Lett.
105
,
176804
(
2010
).
11.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloe
,
Quantum Mechanics
(
Wiley
,
Toronto
,
1992
), pp.
727
764
.
12.
J. H.
Davies
,
The Physics of Low-Dimensional Semiconductors
(
Cambridge U.P.
,
Cambridge
,
1998
), Secs. 6.4 and 6.5.1.
13.

In analogy to atomic physics, the lowest electron shell in quantum dots is commonly called the “s-shell.” Accordingly, the next-higher shell is called the p-shell, even for quantum dots, which do not have circular symmetry, so that angular momentum is no longer a good quantum number.

14.
Y.
Tokura
,
S.
Sasaki
,
D. G.
Austing
, and
S.
Tarucha
, “
Excitation spectra and exchange interactions in circular and elliptical quantum dots
,”
Physica B
298
,
260
266
(
2001
).
15.
F. M.
Peeters
, “
Magneto-optics in parabolic quantum dots
,”
Phys. Rev. B
42
(
2
),
1486
1487
(
1990
).
16.
A.
Beckel
,
D.-M.
Zhou
,
B.
Marquardt
,
D.
Reuter
,
A. D.
Wieck
,
M.
Geller
, and
A.
Lorke
, “
Momentum matching in the tunneling between 2-dimensional and 0-dimensional electron systems
,”
Appl. Phys. Lett.
100
,
232110
(
2012
).
17.
R. J.
Warburton
,
B. T.
Miller
,
C. S.
Dürr
,
C.
Bödefeld
,
K.
Karrai
,
J. P.
Kotthaus
,
G.
Medeiros-Ribeiro
,
P. M.
Petroff
, and
S.
Huant
, “
Coulomb interactions in small charge-tunable quantum dots: A simple model
,”
Phys. Rev. B
58
(
24
),
16221
16231
(
1998
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.