The Casimir force is a spectacular consequence of the existence of vacuum fluctuations and thus deserves a place in courses on quantum theory. We argue that the scattering approach within a one-dimensional field theory is well suited to a discussion of the Casimir effect. It avoids in a transparent way divergences appearing in the evaluation of the vacuum energy. Furthermore, the scattering approach connects in a natural manner to the standard discussion of one-dimensional scattering problems in a quantum theory course. Finally, it allows for the introduction to students of the methods employed in the current research literature to determine the Casimir force in real-world systems.

1.
H. B. G.
Casimir
, “
On the attraction between two perfectly conducting plates
,”
Proc. K. Ned. Akad. Wet.
51
,
793
795
(
1948
).
2.
B. V.
Derjaguin
and
I. I.
Abricossova
, “
Direct measurement of the molecular attraction as a function of the distance between surfaces
,”
(in Russian), Zhur. Eksp. Teor. Fiz. SSSR
21
,
945
946
(
1951
).
3.
J. Th. G.
Overbeek
and
M. J.
Sparnaay
, “
Experimental determination of long-range attractive forces
,”
Proc. K. Ned. Akad. Wet. B
54
,
387
388
(
1951
).
4.
J. Th. G.
Overbeek
and
M. J.
Sparnaay
, “
London-van der Waals attraction between macroscopic objects
,”
Discuss. Faraday Soc.
18
,
12
24
(
1954
).
5.
B. V.
Derjaguin
,
A. S.
Titijevskaia
,
I. I.
Abricossova
, and
A. D.
Malinka
, “
Investigations of the forces of interaction of surfaces in different media and their application to the problem of colloid stability
,”
Discuss. Faraday Soc.
18
,
24
41
(
1954
).
6.
B. V.
Derjaguin
,
I. I.
Abrikosova
, and
E. M.
Lifshitz
, “
Direct measurement of molecular attraction between solids separated by a narrow gap
,”
Q. Rev. Chem. Soc.
10
,
295
329
(
1956
).
7.
J. A.
Kitchener
and
A. P.
Prosser
, “
Direct measurement of the long-range van der Waals forces
,”
Proc. R. Soc. London Ser A
242
,
403
409
(
1957
).
8.
M. J.
Sparnaay
, “
Measurements of attractive forces between flat plates
,”
Physica
24
,
751
764
(
1958
).
9.
W.
Black
,
J. G. V. de
Jongh
,
J. Th. G.
Overbeek
, and
M. J.
Sparnaay
, “
Measurements of retarded van der Waals forces
,”
Trans. Faraday Soc.
56
,
1597
1608
(
1960
).
10.
D.
Tabor
and
R. H. S.
Winterton
, “
Surface forces: Direct measurement of normal and retarded van der Waals forces
,”
Nature
219
,
1120
1121
(
1968
).
11.
S.
Hunklinger
,
H.
Geisselmann
, and
W.
Arnold
, “
A Dynamic Method for Measuring the van der Waals Forces between Macroscopic Bodies
,”
Rev. Sci. Instrum.
43
,
584
587
(
1972
).
12.
J. N.
Israelachvili
and
D.
Tabor
, “
The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm
,”
Proc. R. Soc. London Ser A
331
,
19
38
(
1972
).
13.
P. H. G. M.
van Blokland
and
J. Th. G.
Overbeek
, “
van der Waals forces between objects covered with a chromium layer
,”
J. Chem. Soc., Faraday Trans.
74
,
2637
2651
(
1978
).
14.
E.
Elizalde
and
A.
Romeo
, “
Essentials of the Casimir effect and its computation
,”
Am. J. Phys.
59
,
711
719
(
1991
).
15.
P. W.
Milonni
and
M.-L.
Shih
, “
Casimir forces
,”
Contemp. Phys.
33
,
313
322
(
1992
).
16.
S. K.
Lamoreaux
, “
Casimir forces: Still surprising after 60 years
,”
Phys. Today
60
(
2
),
40
45
(
2007
).
17.
S. K.
Lamoreaux
, “
Demonstration of the Casimir Force in the 0.6 to 6 μm Range
,”
Phys. Rev. Lett.
78
,
5
8
(
1997
).
18.
U.
Mohideen
and
A.
Roy
, “
Precision measurement of the Casimir force from 0.1 to 0.9 μm
,”
Phys. Rev. Lett.
81
,
4549
4552
(
1998
).
19.
Th.
Ederth
, “
Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20–100-nm range
,”
Phys. Rev. A
62
,
062104-1–8
(
2000
).
20.
H. B.
Chan
,
V. A.
Aksyuk
,
R. N.
Kleiman
,
D. J.
Bishop
, and
F.
Capasso
, “
Nonlinear micromechanical Casimir oscillator
,”
Phys. Rev. Lett.
87
,
211801-1–4
(
2001
).
21.
F.
Chen
,
U.
Mohideen
,
G. L.
Klimchitskaya
, and
V. M.
Mostepanenko
, “
Demonstration of the lateral Casimir force
,”
Phys. Rev. Lett.
88
,
101801-1–4
(
2002
).
22.
R. S.
Decca
,
D.
López
,
E.
Fischbach
, and
D. E.
Krause
, “
Measurement of the Casimir force between dissimilar metals
,”
Phys. Rev. Lett.
91
,
050402-1–4
(
2003
).
23.
R. S.
Decca
,
D.
López
,
E.
Fischbach
,
G. L.
Klimchitskaya
,
D. E.
Krause
, and
V. M.
Mostepanenko
, “
Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates
,”
Phys. Rev. D
75
,
077101-1–4
(
2007
).
24.
P. J.
van Zwol
,
G.
Palasantzas
,
M.
van de Schootbrugge
, and
J. Th.
M. De Hosson
, “
Measurement of dispersive forces between evaporated metal surfaces in the range below 100 nm
,”
Appl. Phys. Lett.
92
,
054101-1–3
(
2008
).
25.
H. B.
Chan
,
Y.
Bao
,
J.
Zou
,
R. A.
Cirelli
,
F.
Klemens
,
W. M.
Mansfield
, and
C. S.
Pai
, “
Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays
,”
Phys. Rev. Lett.
101
,
030401-1–4
(
2008
).
26.
G.
Jourdan
,
A.
Lambrecht
,
F.
Comin
, and
J.
Chevrier
, “
Quantitative non-contact dynamic Casimir force measurements
,”
EPL
85
,
31001-1–5
(
2009
).
27.
M.
Masuda
and
M.
Sasaki
, “
Limits on nonstandard forces in the submicrometer range
,”
Phys. Rev. Lett.
102
,
171101-1–4
(
2009
).
28.
S. de
Man
,
K.
Heeck
,
R. J.
Wijngaarden
, and
D.
Iannuzzi
, “
Halving the Casimir force with conductive oxides
,”
Phys. Rev. Lett.
103
,
040402-1–4
(
2009
).
29.
Y.
Bao
,
R.
Guérout
,
J.
Lussange
,
A.
Lambrecht
,
R. A.
Cirelli
,
F.
Klemens
,
W. M.
Mansfield
,
C. S.
Pai
, and
H. B.
Chan
, “
Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects
,”
Phys. Rev. Lett.
105
,
250402-1–4
(
2010
).
30.
G.
Torricelli
,
I.
Pirozhenko
,
S.
Thornton
,
A.
Lambrecht
, and
C.
Binns
, “
Casimir force between a metal and a semimetal
,”
EPL
93
,
51001-1–6
(
2011
).
31.
A. O.
Sushkov
,
W. J.
Kim
,
D. A. R.
Dalvit
, and
S. K.
Lamoreaux
, “
Observation of the thermal Casimir force
,”
Nature Phys.
7
,
230
233
(
2011
).
32.
D.
Garcia-Sanchez
,
K. Y.
Fong
,
H.
Bhaskaran
,
S.
Lamoreaux
, and
H. X.
Tang
, “
Casimir force and in situ surface potential measurements on nanomembranes
,”
Phys. Rev. Lett.
109
,
027202-1–5
(
2012
).
33.
F.
Intravaia
,
S.
Koev
,
I. W.
Jung
,
A. A.
Talin
,
P. S.
Davids
,
R. S.
Decca
,
V. A.
Aksyuk
,
D. A. R.
Dalvit
, and
D.
López
, “
Strong Casimir force reduction through metallic surface nanostructuring
,”
Nature Commun.
4
,
2515-1–8
(
2013
).
34.
Casimir Physics
, edited by
D.
Dalvit
,
P.
Milonni
,
D.
Roberts
, and
F.
Rosa
, Lecture Notes in Physics (
Springer-Verlag
,
Berlin
,
2011
), Vol.
834
.
35.
M.
Bordag
,
G. L.
Klimchitskaya
,
U.
Mohideen
, and
V. M.
Mostepanenko
,
Advances in the Casimir Effect
, International Series of Monographs on Physics (
Oxford U.P.
,
Oxford
,
2009
), Vol.
145
.
36.
S. K.
Lamoreaux
, “
Resource letter CF-1: Casimir force
,”
Am. J. Phys.
67
,
850
861
(
1999
).
37.
K. A.
Milton
, “
Resource letter VWCPF-1: Van der Waals and Casimir-Polder forces
,”
Am. J. Phys.
79
,
697
711
(
2011
).
38.
C.
Itzykson
and
J.-B.
Zuber
,
Quantum Field Theory
(
McGraw-Hill
,
New York
,
1980
), Section 3-2-4.
39.
V.
Hushwater
, “
Repulsive Casimir force as a result of vacuum radiation pressure
,”
Am. J. Phys.
65
,
381
384
(
1997
).
40.
T. H.
Boyer
, “
Casimir forces and boundary conditions in one dimension: Attraction, repulsion, Planck spectrum, and entropy
,”
Am. J. Phys.
71
,
990
998
(
2003
).
41.
L. S.
Brown
and
G. J.
Maclay
, “
Vacuum stress between conducting plates: An image solution
,”
Phys. Rev.
184
,
1272
1279
(
1969
).
42.
R. de Melo e
Souza
,
W. J. M.
Kort-Kamp
,
C.
Sigaud
, and
C.
Farina
, “
Finite-size effects and nonadditivity in the van der Waals interaction
,”
Phys. Rev. A
84
,
052513-1–7
(
2011
).
43.
R. de Melo e
Souza
,
W. J. M.
Kort-Kamp
,
C.
Sigaud
, and
C.
Farina
, “
Image method in the calculation of the van der Waals force between an atom and a conducting surface
,”
Am. J. Phys.
81
,
366
376
(
2013
).
44.
M. T.
Jaekel
and
S.
Reynaud
, “
Casimir force between partially transmitting mirrors
,”
J. Phys. I (France)
1
,
1395
1409
(
1991
).
45.
H.
Gies
,
K.
Langfeld
, and
L.
Moyaerts
, “
Casimir effect on the worldline
,”
J. High Energy Phys.
2003
(
06
),
018-1–28
(
2003
).
46.
R.
Balian
and
B.
Duplantier
, “
Electromagnetic waves near perfect conductors. II. Casimir effect
,”
Ann. Phys. (N.Y.)
112
,
165
208
(
1978
).
47.
M. J.
Renne
, “
Microscopic theory of retarded van der Waals forces between macroscopic dielectric bodies
,”
Physica
56
,
125
137
(
1971
).
48.
D.
Langbein
,
Theory of Van der Waals Attraction
, Springer Tracts in Modern Physics (
Springer-Verlag
,
Berlin
,
1974
), Vol.
72
.
49.
B. A.
Lippmann
and
J.
Schwinger
, “
Variational principles for scattering processes. I
,”
Phys. Rev.
79
,
469
480
(
1950
).
50.
A.
Lambrecht
,
P. A. Maia
Neto
, and
S.
Reynaud
, “
The Casimir effect within scattering theory
,”
New J. Phys.
8
,
243
(
2006
).
51.
O.
Kenneth
and
I.
Klich
, “
Opposites attract: A theorem about the Casimir force
,”
Phys. Rev. Lett.
97
,
160401-1–5
(
2006
).
52.
A.
Bulgac
,
P.
Magierski
, and
A.
Wirzba
, “
Scalar Casimir effect between Dirichlet spheres or a plate and a sphere
,”
Phys. Rev. D
73
,
025007-1–14
(
2006
).
53.
T.
Emig
,
N.
Graham
,
R. L.
Jaffe
, and
M.
Kardar
, “
Casimir forces between arbitrary compact objects
,”
Phys. Rev. Lett.
99
,
170403-1–21
(
2007
).
54.
K. A.
Milton
and
J.
Wagner
, “
Multiple scattering methods in Casimir calculations
,”
J. Phys. A: Math. Theor.
41
,
155402-1–21
(
2008
).
55.
R. L.
Jaffe
and
L. R.
Williamson
, “
The Casimir energy in a separable potential
,”
Ann. Phys. (N.Y.)
282
,
432
448
(
2000
).
56.
R. L.
Jaffe
, “
Unnatural acts: Unphysical consequences of imposing boundary conditions on quantum fields
,”
AIP Conf. Proc.
687
,
3
12
(
2003
).
57.
G.
Bressi
,
G.
Carugno
,
R.
Onofrio
, and
G.
Ruoso
, “
Measurement of the Casimir force between parallel metallic surfaces
,”
Phys. Rev. Lett.
88
,
041804-1–4
(
2002
).
58.
See, for example,
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge U.P.
,
Cambridge
,
1997
).
59.
M.
Büttiker
, “
Four-terminal phase-coherent conductance
,”
Phys. Rev. Lett.
57
,
1761
1764
(
1986
).
60.
C.
Genet
,
A.
Lambrecht
, and
S.
Reynaud
, “
Casimir force and the quantum theory of lossy optical cavities
,”
Phys. Rev. A
67
,
043811-1–18
(
2003
).
61.
E. M.
Lifshitz
, “
The theory of molecular attractive forces between solids
,”
Sov. Phys. JETP
2
,
73
83
(
1956
).
62.
I. E.
Dzyaloshinskii
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
, “
General theory of van der Waals' forces
,”
Sov. Phys. Usp.
4
,
153
176
(
1961
).
63.
K.
Johnson
, “
The M.I.T. bag model
,”
Acta Phys. Pol. B
6
,
865
892
(
1975
).
64.
M.
Lüscher
,
K.
Symanzik
, and
P.
Weisz
, “
Anomalies of the free loop wave equation in the WKB approximation
,”
Nucl. Phys. B
173
,
365
396
(
1980
).
65.
M.
Lüscher
, “
Symmetry-breaking aspects of the roughening transition in gauge theories
,”
Nucl. Phys. B
180
,
317
329
(
1981
).
66.
H. W. J.
Blöte
,
J. L.
Cardy
, and
M. P.
Nightingale
, “
Conformal invariance, the central charge, and universal finite-size amplitudes at criticality
,”
Phys. Rev. Lett.
56
,
742
745
(
1986
).
67.
A.
Lambrecht
and
S.
Reynaud
, “
Casimir force between metallic mirrors
,”
Eur. Phys. J. D
8
,
309
318
(
2000
).
68.
F.
Sauer
, “
Die Temperaturabhängigkeit von Dispersionskräften
,” Ph.D. thesis (
Göttingen
,
1962
).
69.
J.
Mehra
, “
Temperature correction to the Casimir effect
,”
Physica
37
,
145
152
(
1967
).
70.
M.
Boström
and
B. E.
Sernelius
, “
Thermal effects on the Casimir force in the 0.1-5 μm range
,”
Phys. Rev. Lett.
84
,
4757
4760
(
2000
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.