The Casimir force is a spectacular consequence of the existence of vacuum fluctuations and thus deserves a place in courses on quantum theory. We argue that the scattering approach within a one-dimensional field theory is well suited to a discussion of the Casimir effect. It avoids in a transparent way divergences appearing in the evaluation of the vacuum energy. Furthermore, the scattering approach connects in a natural manner to the standard discussion of one-dimensional scattering problems in a quantum theory course. Finally, it allows for the introduction to students of the methods employed in the current research literature to determine the Casimir force in real-world systems.
References
1.
H. B. G.
Casimir
, “On the attraction between two perfectly conducting plates
,” Proc. K. Ned. Akad. Wet.
51
, 793
–795
(1948
).2.
B. V.
Derjaguin
and I. I.
Abricossova
, “Direct measurement of the molecular attraction as a function of the distance between surfaces
,” (in Russian), Zhur. Eksp. Teor. Fiz. SSSR
21
, 945
–946
(1951
).3.
J. Th. G.
Overbeek
and M. J.
Sparnaay
, “Experimental determination of long-range attractive forces
,” Proc. K. Ned. Akad. Wet. B
54
, 387
–388
(1951
).4.
J. Th. G.
Overbeek
and M. J.
Sparnaay
, “London-van der Waals attraction between macroscopic objects
,” Discuss. Faraday Soc.
18
, 12
–24
(1954
).5.
B. V.
Derjaguin
, A. S.
Titijevskaia
, I. I.
Abricossova
, and A. D.
Malinka
, “Investigations of the forces of interaction of surfaces in different media and their application to the problem of colloid stability
,” Discuss. Faraday Soc.
18
, 24
–41
(1954
).6.
B. V.
Derjaguin
, I. I.
Abrikosova
, and E. M.
Lifshitz
, “Direct measurement of molecular attraction between solids separated by a narrow gap
,” Q. Rev. Chem. Soc.
10
, 295
–329
(1956
).7.
J. A.
Kitchener
and A. P.
Prosser
, “Direct measurement of the long-range van der Waals forces
,” Proc. R. Soc. London Ser A
242
, 403
–409
(1957
).8.
M. J.
Sparnaay
, “Measurements of attractive forces between flat plates
,” Physica
24
, 751
–764
(1958
).9.
W.
Black
, J. G. V. de
Jongh
, J. Th. G.
Overbeek
, and M. J.
Sparnaay
, “Measurements of retarded van der Waals forces
,” Trans. Faraday Soc.
56
, 1597
–1608
(1960
).10.
D.
Tabor
and R. H. S.
Winterton
, “Surface forces: Direct measurement of normal and retarded van der Waals forces
,” Nature
219
, 1120
–1121
(1968
).11.
S.
Hunklinger
, H.
Geisselmann
, and W.
Arnold
, “A Dynamic Method for Measuring the van der Waals Forces between Macroscopic Bodies
,” Rev. Sci. Instrum.
43
, 584
–587
(1972
).12.
J. N.
Israelachvili
and D.
Tabor
, “The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm
,” Proc. R. Soc. London Ser A
331
, 19
–38
(1972
).13.
P. H. G. M.
van Blokland
and J. Th. G.
Overbeek
, “van der Waals forces between objects covered with a chromium layer
,” J. Chem. Soc., Faraday Trans.
74
, 2637
–2651
(1978
).14.
E.
Elizalde
and A.
Romeo
, “Essentials of the Casimir effect and its computation
,” Am. J. Phys.
59
, 711
–719
(1991
).15.
P. W.
Milonni
and M.-L.
Shih
, “Casimir forces
,” Contemp. Phys.
33
, 313
–322
(1992
).16.
S. K.
Lamoreaux
, “Casimir forces: Still surprising after 60 years
,” Phys. Today
60
(2
), 40
–45
(2007
).17.
S. K.
Lamoreaux
, “Demonstration of the Casimir Force in the 0.6 to 6 μm Range
,” Phys. Rev. Lett.
78
, 5
–8
(1997
).18.
U.
Mohideen
and A.
Roy
, “Precision measurement of the Casimir force from 0.1 to 0.9 μm
,” Phys. Rev. Lett.
81
, 4549
–4552
(1998
).19.
Th.
Ederth
, “Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20–100-nm range
,” Phys. Rev. A
62
, 062104-1–8
(2000
).20.
H. B.
Chan
, V. A.
Aksyuk
, R. N.
Kleiman
, D. J.
Bishop
, and F.
Capasso
, “Nonlinear micromechanical Casimir oscillator
,” Phys. Rev. Lett.
87
, 211801-1–4
(2001
).21.
F.
Chen
, U.
Mohideen
, G. L.
Klimchitskaya
, and V. M.
Mostepanenko
, “Demonstration of the lateral Casimir force
,” Phys. Rev. Lett.
88
, 101801-1–4
(2002
).22.
R. S.
Decca
, D.
López
, E.
Fischbach
, and D. E.
Krause
, “Measurement of the Casimir force between dissimilar metals
,” Phys. Rev. Lett.
91
, 050402-1–4
(2003
).23.
R. S.
Decca
, D.
López
, E.
Fischbach
, G. L.
Klimchitskaya
, D. E.
Krause
, and V. M.
Mostepanenko
, “Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates
,” Phys. Rev. D
75
, 077101-1–4
(2007
).24.
P. J.
van Zwol
, G.
Palasantzas
, M.
van de Schootbrugge
, and J. Th.
M. De Hosson
, “Measurement of dispersive forces between evaporated metal surfaces in the range below 100 nm
,” Appl. Phys. Lett.
92
, 054101-1–3
(2008
).25.
H. B.
Chan
, Y.
Bao
, J.
Zou
, R. A.
Cirelli
, F.
Klemens
, W. M.
Mansfield
, and C. S.
Pai
, “Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays
,” Phys. Rev. Lett.
101
, 030401-1–4
(2008
).26.
G.
Jourdan
, A.
Lambrecht
, F.
Comin
, and J.
Chevrier
, “Quantitative non-contact dynamic Casimir force measurements
,” EPL
85
, 31001-1–5
(2009
).27.
M.
Masuda
and M.
Sasaki
, “Limits on nonstandard forces in the submicrometer range
,” Phys. Rev. Lett.
102
, 171101-1–4
(2009
).28.
S. de
Man
, K.
Heeck
, R. J.
Wijngaarden
, and D.
Iannuzzi
, “Halving the Casimir force with conductive oxides
,” Phys. Rev. Lett.
103
, 040402-1–4
(2009
).29.
Y.
Bao
, R.
Guérout
, J.
Lussange
, A.
Lambrecht
, R. A.
Cirelli
, F.
Klemens
, W. M.
Mansfield
, C. S.
Pai
, and H. B.
Chan
, “Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects
,” Phys. Rev. Lett.
105
, 250402-1–4
(2010
).30.
G.
Torricelli
, I.
Pirozhenko
, S.
Thornton
, A.
Lambrecht
, and C.
Binns
, “Casimir force between a metal and a semimetal
,” EPL
93
, 51001-1–6
(2011
).31.
A. O.
Sushkov
, W. J.
Kim
, D. A. R.
Dalvit
, and S. K.
Lamoreaux
, “Observation of the thermal Casimir force
,” Nature Phys.
7
, 230
–233
(2011
).32.
D.
Garcia-Sanchez
, K. Y.
Fong
, H.
Bhaskaran
, S.
Lamoreaux
, and H. X.
Tang
, “Casimir force and in situ surface potential measurements on nanomembranes
,” Phys. Rev. Lett.
109
, 027202-1–5
(2012
).33.
F.
Intravaia
, S.
Koev
, I. W.
Jung
, A. A.
Talin
, P. S.
Davids
, R. S.
Decca
, V. A.
Aksyuk
, D. A. R.
Dalvit
, and D.
López
, “Strong Casimir force reduction through metallic surface nanostructuring
,” Nature Commun.
4
, 2515-1–8
(2013
).34.
Casimir Physics
, edited by D.
Dalvit
, P.
Milonni
, D.
Roberts
, and F.
Rosa
, Lecture Notes in Physics (Springer-Verlag
, Berlin
, 2011
), Vol. 834
.35.
M.
Bordag
, G. L.
Klimchitskaya
, U.
Mohideen
, and V. M.
Mostepanenko
, Advances in the Casimir Effect
, International Series of Monographs on Physics (Oxford U.P.
, Oxford
, 2009
), Vol. 145
.36.
S. K.
Lamoreaux
, “Resource letter CF-1: Casimir force
,” Am. J. Phys.
67
, 850
–861
(1999
).37.
K. A.
Milton
, “Resource letter VWCPF-1: Van der Waals and Casimir-Polder forces
,” Am. J. Phys.
79
, 697
–711
(2011
).38.
C.
Itzykson
and J.-B.
Zuber
, Quantum Field Theory
(McGraw-Hill
, New York
, 1980
), Section 3-2-4.39.
V.
Hushwater
, “Repulsive Casimir force as a result of vacuum radiation pressure
,” Am. J. Phys.
65
, 381
–384
(1997
).40.
T. H.
Boyer
, “Casimir forces and boundary conditions in one dimension: Attraction, repulsion, Planck spectrum, and entropy
,” Am. J. Phys.
71
, 990
–998
(2003
).41.
L. S.
Brown
and G. J.
Maclay
, “Vacuum stress between conducting plates: An image solution
,” Phys. Rev.
184
, 1272
–1279
(1969
).42.
R. de Melo e
Souza
, W. J. M.
Kort-Kamp
, C.
Sigaud
, and C.
Farina
, “Finite-size effects and nonadditivity in the van der Waals interaction
,” Phys. Rev. A
84
, 052513-1–7
(2011
).43.
R. de Melo e
Souza
, W. J. M.
Kort-Kamp
, C.
Sigaud
, and C.
Farina
, “Image method in the calculation of the van der Waals force between an atom and a conducting surface
,” Am. J. Phys.
81
, 366
–376
(2013
).44.
M. T.
Jaekel
and S.
Reynaud
, “Casimir force between partially transmitting mirrors
,” J. Phys. I (France)
1
, 1395
–1409
(1991
).45.
H.
Gies
, K.
Langfeld
, and L.
Moyaerts
, “Casimir effect on the worldline
,” J. High Energy Phys.
2003
(06
), 018-1–28
(2003
).46.
R.
Balian
and B.
Duplantier
, “Electromagnetic waves near perfect conductors. II. Casimir effect
,” Ann. Phys. (N.Y.)
112
, 165
–208
(1978
).47.
M. J.
Renne
, “Microscopic theory of retarded van der Waals forces between macroscopic dielectric bodies
,” Physica
56
, 125
–137
(1971
).48.
D.
Langbein
, Theory of Van der Waals Attraction
, Springer Tracts in Modern Physics (Springer-Verlag
, Berlin
, 1974
), Vol. 72
.49.
B. A.
Lippmann
and J.
Schwinger
, “Variational principles for scattering processes. I
,” Phys. Rev.
79
, 469
–480
(1950
).50.
A.
Lambrecht
, P. A. Maia
Neto
, and S.
Reynaud
, “The Casimir effect within scattering theory
,” New J. Phys.
8
, 243
(2006
).51.
O.
Kenneth
and I.
Klich
, “Opposites attract: A theorem about the Casimir force
,” Phys. Rev. Lett.
97
, 160401-1–5
(2006
).52.
A.
Bulgac
, P.
Magierski
, and A.
Wirzba
, “Scalar Casimir effect between Dirichlet spheres or a plate and a sphere
,” Phys. Rev. D
73
, 025007-1–14
(2006
).53.
T.
Emig
, N.
Graham
, R. L.
Jaffe
, and M.
Kardar
, “Casimir forces between arbitrary compact objects
,” Phys. Rev. Lett.
99
, 170403-1–21
(2007
).54.
K. A.
Milton
and J.
Wagner
, “Multiple scattering methods in Casimir calculations
,” J. Phys. A: Math. Theor.
41
, 155402-1–21
(2008
).55.
R. L.
Jaffe
and L. R.
Williamson
, “The Casimir energy in a separable potential
,” Ann. Phys. (N.Y.)
282
, 432
–448
(2000
).56.
R. L.
Jaffe
, “Unnatural acts: Unphysical consequences of imposing boundary conditions on quantum fields
,” AIP Conf. Proc.
687
, 3
–12
(2003
).57.
G.
Bressi
, G.
Carugno
, R.
Onofrio
, and G.
Ruoso
, “Measurement of the Casimir force between parallel metallic surfaces
,” Phys. Rev. Lett.
88
, 041804-1–4
(2002
).58.
See, for example,
S.
Datta
, Electronic Transport in Mesoscopic Systems
(Cambridge U.P.
, Cambridge
, 1997
).59.
M.
Büttiker
, “Four-terminal phase-coherent conductance
,” Phys. Rev. Lett.
57
, 1761
–1764
(1986
).60.
C.
Genet
, A.
Lambrecht
, and S.
Reynaud
, “Casimir force and the quantum theory of lossy optical cavities
,” Phys. Rev. A
67
, 043811-1–18
(2003
).61.
E. M.
Lifshitz
, “The theory of molecular attractive forces between solids
,” Sov. Phys. JETP
2
, 73
–83
(1956
).62.
I. E.
Dzyaloshinskii
, E. M.
Lifshitz
, and L. P.
Pitaevskii
, “General theory of van der Waals' forces
,” Sov. Phys. Usp.
4
, 153
–176
(1961
).63.
64.
M.
Lüscher
, K.
Symanzik
, and P.
Weisz
, “Anomalies of the free loop wave equation in the WKB approximation
,” Nucl. Phys. B
173
, 365
–396
(1980
).65.
M.
Lüscher
, “Symmetry-breaking aspects of the roughening transition in gauge theories
,” Nucl. Phys. B
180
, 317
–329
(1981
).66.
H. W. J.
Blöte
, J. L.
Cardy
, and M. P.
Nightingale
, “Conformal invariance, the central charge, and universal finite-size amplitudes at criticality
,” Phys. Rev. Lett.
56
, 742
–745
(1986
).67.
A.
Lambrecht
and S.
Reynaud
, “Casimir force between metallic mirrors
,” Eur. Phys. J. D
8
, 309
–318
(2000
).68.
F.
Sauer
, “Die Temperaturabhängigkeit von Dispersionskräften
,” Ph.D. thesis (Göttingen
, 1962
).69.
J.
Mehra
, “Temperature correction to the Casimir effect
,” Physica
37
, 145
–152
(1967
).70.
M.
Boström
and B. E.
Sernelius
, “Thermal effects on the Casimir force in the 0.1-5 μm range
,” Phys. Rev. Lett.
84
, 4757
–4760
(2000
).© 2015 American Association of Physics Teachers.
2015
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.