We present the design of a Zeeman slower for calcium atoms using permanent magnets instead of more traditional electromagnets and the novel technique of 3D printing to create a very robust and flexible structure for these magnets. Zeeman slowers are ideal tools to slow atoms from several hundreds of meters per second to just a few tens of meters per second. These slower atoms can then easily be trapped in a magneto-optical trap, making Zeeman slowers a very valuable tool in many cold atom labs. The use of permanent magnets and 3D printing results in a highly stable and robust slower that is suitable for undergraduate laboratories. In our design, we arranged 28 magnet pairs, 2.0 cm apart along the axis of the slower and at varying radial distances from the axis. We determined the radial position of the magnets by simulating the combined field of all magnet pairs using Mathematica and comparing it to the ideal theoretical field for a Zeeman slower. Finally, we designed a stable, robust, compact, and easy-to-align mounting structure for the magnets in Google Sketchup, which we then printed using a commercially available 3D printer by Solidoodle. The resulting magnetic field is well suited to slow calcium atoms from the 770 m/s rms velocity at a temperature of 950 K, down to the capture velocity of the magneto-optical trap.

1.
E. L.
Raab
,
M.
Prentiss
,
A.
Cable
,
S.
Chu
, and
D. E.
Pritchard
, “
Trapping of neutral sodium atoms with radiation pressure
,”
Phys. Rev. Lett.
59
,
2631
2634
(
1987
).
2.
S.
Chu
, “
The manipulation of neutral particles
,” Nobel Lecture, <http://www.nobelprize.org/nobel_prizes/physics/laureates/1997/chu-lecture.pdf>.
3.
W. D.
Phillips
, “
Laser cooling and trapping of neutral atoms
,” Nobel Lecture, <http://www.nobelprize.org/nobel_prizes/physics/laureates/1997/phillips-lecture.pdf>.
4.
C.
Cohen-Tannoudji
, “
Manipulating atoms with photons
,” Nobel Lecture, <http://www.nobelprize.org/nobel_prizes/physics/laureates/1997/cohen-tannoudji-lecture.pdf>.
5.
M. H.
Anderson
,
J. R.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
, and
E. A.
Cornell
, “
Observation of Bose-Einstein-Condensation in a dilute atomic vapor
,”
Science
269
,
198
201
(
1995
).
6.
E. A.
Cornell
and
C. E.
Wieman
, “
Bose-Einstein-condensation in a dilute gas: The first 70 years and some recent experiments
,” Nobel Lecture, <http://www.nobelprize.org/nobel_prizes/physics/laureates/2001/cornellwieman-lecture.pdf>.
7.
B.
DeMarco
and
D. S.
Jin
, “
Onset of Fermi degeneracy in a trapped atomic gas
,”
Science
285
,
1703
1706
(
1999
).
8.
J.
Helmcke
, “
Precision spectroscopy with ultracold atoms: Measurement of optical frequencies
,”
Proc. SPIE
5226
,
22
32
(
2003
).
9.
A. C.
Vutha
,
W.
Campbell
,
Y.
Gurevich
,
N.
Hutzler
,
M.
Parsons
,
D.
Patterson
,
E.
Petrik
,
B.
Spaun
,
J.
Doyle
,
G.
Gabrielse
, and
D.
DeMille
, “
Search for the electric dipole moment of the electron with thorium monoxide
,”
J. Phys. B
43
,
074007
074015
(
2010
).
10.
M. G.
Kozlov
and
D.
DeMille
, “
Enhancement of the electric dipole moment of the electron in PbO
,”
Phys. Rev. Lett.
89
,
133001
133005
(
2002
).
11.
D.
DeMille
, “
Quantum computation with trapped polar molecules
,”
Phys. Rev. Lett.
88
,
067901
(
2002
).
12.
I.
Bloch
, “
Quantum coherence and entanglement with ultracold atoms in optical lattices
,”
Nature
453
,
1016
1022
(
2008
).
13.
J.
Hutson
and
P.
Soldan
, “
Molecule formation in ultracold atomic gases
,”
Int. Rev. Phys. Chem.
25
,
497
526
(
2006
).
14.
G.
Uhlenberg
,
J.
Dirscherl
, and
H.
Walther
, “
Magneto-optical trapping of silver atoms
,”
Phys. Rev. A
62
,
063404-1
4
(
2000
).
15.
J.
Miao
,
J.
Hostetter
,
G.
Stratis
, and
M.
Saffman
, “
Magneto-optical trapping of holmium atoms
,”
Physical Review A
89
,
041401
(
2014
).
16.
M. S.
Santos
,
P.
Nussenzveig
,
L. G.
Marcassa
,
K.
Helmerson
,
J.
Flemming
,
S. C.
Zilio
, and
V. S.
Bagnato
, “
Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap
,”
Phys. Rev. A
52
,
R4340
R4347
(
1995
).
17.
W. D.
Phillips
and
H.
Metcalf
, “
Laser deceleration of an atomic beam
,”
Phys. Rev. Lett.
48
,
596
599
(
1982
).
18.
B.
Ohayon
and
G.
Ron
, “
New approaches in designing a Zeeman slower
,”
J. Instrum.
8
,
P02016
(
2013
).
19.
L.
Zhao
,
J.
Jiang
, and
Y.
Liu
, “
Optimizing a spin-flip Zeeman slower
,” e-print arXiv:1401.7181v1 [cond-mat.quant-gas].
20.
G.
Lamporesi
,
S.
Donadello
,
S.
Serafini
, and
G.
Ferrari
, “
Compact high-flux source of cold sodium atoms
,”
Rev. Sci. Instrum.
84
,
063102
063109
(
2013
).
21.
G.
Reinaudi
,
C. B.
Osborn
,
K.
Bega
, and
T.
Zelevinsky
, “
Dynamically configurable and optimizable Zeeman slower using permanent magnets and servomotors
,”
J. Opt. Soc. Am. B
29
,
729
733
(
2012
).
22.
P.
Cheiney
,
O.
Carraz
,
D.
Bartoszek-Bober
,
S.
Faure
,
F.
Vermersch
,
C. M.
Fabre
,
G. L.
Gattobigio
,
T.
Lahaye
,
D.
Gu'ery-Odelin
, and
R.
Mathevet
, “
A Zeeman slower design with permanent magnets in a Halbach configuration
,”
Rev. Sci. Instrum.
82
,
063115
063121
(
2011
).
23.
Y. B.
Ovchinnikov
, “
Longitudinal Zeeman slowers based on permanent magnetic dipoles
,”
Opt. Commun.
285
,
1175
1180
(
2012
).
24.
I. R.
Hill
,
Y. B.
Ovchinnikov
,
E. M.
Bridge
,
E. A.
Curtis
, and
P.
Gill
, “
Zeeman slowers for strontium based on permanent magnets
,”
Journal of Physics B: Atomic, Molecular and Optical Physics
47
,
075006
(
2014
).
25.
V.
Lebedev
and
D. M.
Weld
, “
Self-assembled Zeeman slower based on spherical permanent magnets
,”
Journal of Physics B: Atomic, Molecular and Optical Physics
47
,
155003
(
2014
).
26.
I.
Norris
, “
Laser cooling and trapping of neutral calcium atoms
,” Ph.D. thesis (
University of Strathclyde
,
2009
).
27.
E. A.
Cummings
,
J.
Daily
,
D.
Durfee
, and
S.
Bergeson
, “
Ultracold neutral plasma expansion in two dimensions
,”
Phys. Plasmas
12
,
123501-1
7
(
2005
).
28.
H.
Metcalf
and
P.
van der Straten
,
Laser Cooling and Trapping (Graduate Texts in Contemporary Physics)
(
Springer
,
New York
,
1999
).
29.
K.
Gunter
, “
Design and implementation of a Zeeman slower for 87Rb
,” Ph.D. thesis (
Laboratoire Kastler-Brossel
,
2004
).
30.
D.
Steck
, “
Alkali D-Line data
,”
2014
, <http://steck.us/alkalidata>.
31.
K & J Magnetics
,
2014
, <www.kjmagnetics.com>.
32.
Solidoodle
,
2014
, <www.solidoodle.com>.
33.
Google SketchUp
,
2014
, <www.sketchup.com>.
34.
Low-friction cart by Pasco
,
2014
, <http://www.pasco.com>.
35.
AlphaLabs Inc.
,
2014
, <www.trifield.com>.
36.
See supplementary material at http://dx.doi.org/10.1119/1.4930080 for The SketchUp files.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.