The notion of the macroscopic in fundamental quantum theory is analyzed. After a brief summary of use of the term macroscopic, its use in quantum theory is compared with its previous use elsewhere. Next, the connections specifically to the Copenhagen interpretation of quantum mechanics and quantum measurement theory more generally, where this term first began to deviate from previous uses, are explained and exhibited through a number of examples. Then, recent attempts to define accurately and quantitatively the extent of being macroscopic, that is, macroscopicity are discussed and their implications considered. This is done most particularly in the realm of quantum optics, where it differs most from previous uses and has recently been of considerable interest. Finally, with the benefit of this analysis, recommendations are made regarding future use of the notion of the macroscopic in fundamental physics.

1.
P.
Bokulich
and
A.
Bokulich
, “
Niels Bohr's generalization of classical mechanics
,”
Found. Phys.
35
,
347
371
(
2005
).
2.
N.
Bohr
, “
The quantum postulate and the recent development of atomic theory
,”
Nature
121
,
580
590
(
1928
).
3.
E. P.
Wigner
, “
The problem of measurement
,”
Am. J. Phys.
31
,
6
15
(
1963
).
4.
A.
Leggett
, “
Macroscopic quantum systems and the quantum theory of measurement
,”
Prog. Theor. Phys. Suppl.
69
,
80
100
(
1980
).
5.
G.
Björk
and
P. G. L.
Mana
, “
A size criterion for macroscopic superposition states
,”
J. Opt. B
6
,
429
436
(
2004
).
6.
F.
Fröwis
and
W.
Dür
, “
Are cloned quantum states macroscopic?
,”
Phys. Rev. Lett.
109
,
170401
1
(
2012
).
7.
J. I.
Korsbakken
,
K. B.
Whaley
,
J.
Dubois
, and
J. I.
Cirac
, “
Measurement-based measure of the size of macroscopic quantum Superpositions
,”
Phys. Rev. A
75
,
042106
1
(
2007
).
8.
See p. 80 of Ref. 4.
9.
R. K.
Pathia
and
P. D.
Beale
,
Statistical Mechanics
(
Academic Press
,
London
,
2011
), p.
1
.
10.
D.
Howard
, “
Who invented the ‘Copenhagen interpretation’?
,”
Philos. Sci.
71
,
669
682
(
2004
).
11.
W.
Żurek
, “
Decoherence and the transition from quantum to classical—revisited
,”
Los Alamos Sci.
27
,
2
25
(
2002
), e-print arXiv:quant-ph/0306072;
W.
Żurek
,
Phys. Today
44
(
10
),
36
44
(
1991
).
12.
R. K.
Pathia
and
P. D.
Beale
,
Statistical Mechanics
(
Academic Press
,
London
,
2011
).
13.
F.
Reif
,
Fundamentals of Statistical and Thermal Physics
(International Student Edition) (
McGraw-Hill
,
Boston
,
1965
), p.
2
.
14.
H.
Haken
and
H. C.
Wolf
,
The Physics of Atoms and Quanta
, 7th ed. (
Springer
,
Heidelberg
,
2005
), p.
112
.
15.
J.
Woods Haley
,
Statistical Mechanics: From First Principles to Macroscopic Phenomena
(
Cambridge U.P.
,
Cambridge
,
2006
).
16.
R. K.
Pathria
,
Statistical Mechanics
, Corrected 1st ed. (
Oxford
,
Pergammon
,
1985
), p.
1
.
17.
R. K.
Pathia
and
P. D.
Beale
,
Statistical Mechanics
(
Academic Press
,
London
,
2011
), p.
xix
.
18.
R. K.
Pathia
and
P. D.
Beale
,
Statistical Mechanics
(
Academic Press
,
London
,
2011
), p.
5
.
19.
R. K.
Pathia
and
P. D.
Beale
,
Statistical Mechanics
(
Academic Press
,
London
,
2011
), pp.
1
2
.
20.
J.
von Neumann
,
Mathematische Grundlagen der Quantenmechanik
(
Julius Springer
,
Berlin
,
1932
) [English translation: Mathematical Foundations of Quantum Mechanics (Princeton U.P., Princeton, NJ, 1955)].
21.
J.
von Neumann
,
Mathematische Grundlagen der Quantenmechanik
(
Julius Springer
,
Berlin
,
1932
) [English translation: Mathematical Foundations of Quantum Mechanics (Princeton U.P., Princeton, NJ, 1955)], Chap. V, Sec. 4.
22.
E.
Schrödinger
, “
Die gegenwaertige Situation in der Quantenmechanik
,”
Naturwissensch.
23
,
807
812
(
1935
).
23.
K. V.
Laurikainen
,
Beyond the Atom
(
Springer
,
Heidelberg
,
1985
), p.
60
.
24.
D.
Howard
, “
What Makes a Classical Concept Classical? Toward a Reconstruction of Niels Bohr's Philosophy of Physics
”, in
Niels Bohr and Contemporary Philosophy
, edited by
J.
Faye
and
H.
Folse
, Boston Studies in the Philosophy of Science (
Kluwer
,
Dordrecht
,
1994
), Vol. 158. pp.
201
229
.
25.
See p. 81 of Ref. 4.
26.
N.
Bohr
, “
On the application of the quantum theory to atomic structure
,”
Proc. Camb. Philos. Soc. Suppl.
1–42
,
22
(
1924
).
Reprinted in
Niels Bohr Collected Works, Vol. 3: The correspondence principle (1918-1923)
, edited by
J. R.
Nielsen
(
North-Holland
,
Amsterdam
,
1976
), pp.
457
499
.
27.
W.
Heisenberg
,
Physics and Philosophy: The Revolution in Modern Science
(
Harper and Brothers
,
New York, NY
,
1958
).
28.
N.
Bohr
, “
Can quantum mechanical description of physical reality be considered complete?
,”
Phys. Rev.
48
,
696
702
(
1935
).
29.
N.
Bohr
, “
On atoms and human knowledge
,”
Daedalus
87
(
2
),
164
175
(
1958
), available at http://www.unz.org/Pub/Daedalus-1958q1-00164.
Reprinted in
Niels Bohr Collected Works, Vol. 7: Foundations of Quantum Physics II (1933-1958)
, edited by
J.
Kalckar
(
North-Holland
,
Amsterdam
,
1996
), pp.
411
423
.
30.
J.
Faye
, “
Copenhagen interpretation of quantum mechanics
,”
The Stanford Encyclopedia of Philosophy (Fall 2008 edition)
, edited by
Edward N.
Zalta
<http://plato.stanford.edu/archives/fall2008/entries/qm-copenhagen/>.
31.
L. L.
Van Zandt
, “
Separation of the microscopic and macroscopic domains
,”
Am. J. Phys.
45
,
52
55
(
1977
).
32.
H.
Haken
and
H. C.
Wolf
,
The Physics of Atoms and Quanta
, 7th ed. (
Springer
,
Heidelberg
,
2005
), p.
117
.
33.
G.
Ludwig
,
Foundations of Quantum Physics I
(
Springer-Verlag
,
New York
,
1983
) (English translation of Die Grundlagen der Quantenmechanik (Springer-Verlag, Berlin–Heidelberg–New York, 1954), p. 3.)
34.
A.
Danieri
,
A.
Loinger
, and
G. M.
Prosperi
, “
Quantum theory of measurement and ergodicity conditions
,”
Nucl. Phys.
33
,
297
319
(
1962
).
35.
E. P.
Wigner
, “
Die Messung quantenmechanischer Operatoren
,”
Z. Phys.
133
,
101
108
(
1962
).
36.
See p. 659 of Ref. 34.
37.
See p. 688 of Ref. 34.
38.
H.
Putnam
, “
A philosopher looks at quantum mechanics
,”
in Beyond the Edge of Certainty
, edited by
R.
Colodny
(
University of Pittsburgh
,
Pittsburgh
,
1965
), p.
65
.
39.
J.
Bub
, “
The Danieri–Loinger–Prosperi quantum theory of measurement
,”
Il Nuovo Cim.
57B
,
503
520
(
1968
).
40.
D.
Home
and
A.
Whitaker
,
Einstein'S Struggles with Quantum Theory: A reappraisal
(
Springer
,
New York, NY
,
2007
), p.
310
.
41.
Prosperi appears to have conceded this point, as he then published no more on this approach and apparently viewed the quantum measurement problem as unsolved. See
O.
Freire
, “
Orthodoxy and heterodoxy in the research on the foundations of quantum mechanics: E. P. Wigner's case
,” in
Cognitive Justice in a Global World
, edited by
B. S.
Santos
(
University of Wisconsin Press
,
Madison
,
2005
).
42.
E. P.
Wigner
, “
The Subject of our Discussions
,” in
Foundations of quantum mechanics. Proceedings of the International School of Physics “Enrico Fermi”
(
Academic Press
,
London
,
1971
), p.
5
.
43.
E. P.
Wigner
, “
The Subject of our Discussions
,” in
Foundations of Quantum Mechanics. Proceedings of the International School of Physics “Enrico Fermi”
(
Academic Press
,
London
,
1971
), p.
7
.
44.
G. M.
Prosperi
, “
Macroscopic Physics and the Problem of Measurement
” in
Foundations of Quantum Mechanics, Proceedings of the International School of Physics “Enrico Fermi”
(
Academic Press
,
London
,
1971
), pp.
97
126
.
45.
J. S.
Bell
, “
On wave packet reduction in the Coleman–Hepp model
,”
Helv. Phys. Acta
48
,
93
98
(
1975
), available at https://inspirehep.net/record/90441?ln=de.
46.
G. C.
Ghirardi
,
A.
Rimini
, and
T.
Weber
, “
Unified dynamics for microscopic and macroscopic systems
,”
Phys. Rev. D
34
,
470
491
(
1986
).
47.
See pp. 480–483 of Ref. 46.
48.
F.
Marquardt
,
B.
Abel
, and
J.
von Delft
, “
Measuring the size of a quantum superposition of many-body states
,”
Phys. Rev. A
78
,
012109
1
(
2008
).
49.
See the following review article on this decomposition by Ekert and Knight for the role of this decomposition in cases such as this.
A.
Ekert
and
P. L.
Knight
, “
Entangled quantum systems and the Schmidt decomposition
,”
Am. J. Phys.
63
,
415
423
(
1995
).
50.
See pp. 83–84 of Ref. 4.
51.
A.
Leggett
, “
Testing the limits of quantum mechanics: Motivation, state of play, prospects
,”
J. Phys.: Condens. Matter
14
,
R415
R451
(
2002
).
52.
A.
Leggett
, “
The order parameter as a macroscopic wavefunction
,”
in Lecture Notes in Physics m62
, edited by
J.
Berger
and
J.
Rubinstein
(
Springer
,
Heidelberg
,
2000
), pp.
230
238
.
53.
A. J.
Leggett
,
Condensation and coherence in condensed matter, Proceedings of the Nobel jubilee symposium
, 4-7 December 2001 in Göteborg, Sweden, edited by
T.
Claeson
and
P.
Delsing
(
World Scientific Publishing Co. Pte. Ltd.
,
Singapore
,
2003
), pp.
69
73
.
54.
A.
Leggett
,
Quantum Liquids
(
Oxford U.P.
,
Oxford
,
2006
), p.
43
.
55.
See p. 85 of Ref. 4.
56.
J.
Clarke
,
A. N.
Cleland
,
M. H.
Devoret
,
D.
Esteve
, and
J. M.
Martinis
, “
Quantum mechanics of a macroscopic variable: The phase difference of a Josephson junction
,”
Science
239
,
992
997
(
1988
).
57.
A.
Leggett
, “
Quantum mechanics at the macroscopic mevel
,”
in Nonlinearity in Condensed Matter
, edited by
A. R.
Bishop
(
Springer
,
Heidelberg
,
1987
).
58.
See p. 88 of Ref. 4.
59.
A.
Shimony
, “
Degree of entanglement
,”
Ann. N Y Acad. Sci.
755
,
675
679
(
1995
).
60.
For a recent review see, for example,
R.
Horodečki
,
P.
Horodečki
,
M.
Horodečki
, and
K.
Horodečki
, “
Quantum entanglement
,”
Rev. Mod. Phys.
81
,
865
942
(
2009
).
61.
A.
Leggett
, “
The significance of the MQC experiment
,”
J. Supercond.
12
,
683
687
(
1999
).
62.
A.
Leggett
,“
Quantum mechanics at the macroscopic level
,” in
Nonlinearity in Condensed Matter
, edited by
A. R.
Bishop
, (
Springer
,
Heidelberg
,
1987
), p.
169
.
63.
See p. 684–685 of Ref. 61.
64.
J. R.
Friedman
,
V.
Patel
,
W.
Chen
,
S. K.
Tolpygo
, and
J. E.
Lukens
, “
Quantum superposition of distinct macroscopic states
,”
Nature
406
,
43
46
(
2000
).
65.
Institute of Physics, “Schrodinger'S Cat comes into view,” IOP Physics World. Available online at <http://physicsworld.com/cws/article/news/2000/jul/05/schrodingers-cat-comes-into-view/>.
66.
W.
Dür
,
C.
Simon
, and
J. I.
Cirac
, “
Effective size of certain macroscopic quantum superpositions
,”
Phys. Rev. Lett.
89
,
210402
1
(
2002
).
67.
D. M.
Greenberger
,
M. A.
Horne
, and
A.
Zeilinger
, “
Going beyond Bell's theorem
,” in
Bell'S theorem, Quantum Theory and Conceptions of the Universe
, edited by
M.
Kafatos
(
Kluwer Academic Publishers
,
Dordrecht
,
1989
), pp.
69
72
.
68.
D. M.
Greenberger
,
M. A.
Horne
, and
A.
Zeilinger
, “
Multiparticle interferometry and the superposition principle
,”
Phys. Today
46
,
22
29
(
1993
).
69.
M.
Brune
,
P.
Nussenzveig
,
F.
Schmidt-Kaler
,
F.
Bernardot
,
A.
Maali
,
J.-M.
Raimond
, and
S.
Haroche
, “
From Lamb shift to light shifts: Vacuum and sub-photon cavity fields measured by atomic interferometry
,”
Phys. Rev. Lett.
72
,
3339
3342
(
1994
).
70.
S.
Haroche
, “
Quantum information in cavity quantum electrodynamics: Logic gates, entanglement engineering and ‘Schrödinger-cat states
,’”
Philos. Trans. R. Soc. London, Ser. A
361
,
1339
1347
(
2003
).
71.
F.
DeMartini
and
F.
Sciarrino
, “
Colloquium: Multiparticle quantum superpositions and the quantum-to-classical transition
,”
Rev. Mod. Phys.
84
,
1765
1789
(
2012
).
72.
See p. 425 of Ref. 51.
73.
A.
Shimizu
and
T.
Miyadera
, “
Stability of quantum states of finite macroscopic systems against classical noises, perturbations from environments, and local measurements
,”
Phys. Rev. Lett.
89
,
270403
1
(
2002
).
74.
See pp. R424–R425 of Ref. 72.
75.
International Bureau of Weights and Measures, The International System of Units (SI), 8th ed., pp. 114–115 (
2006
).
76.
For a recent discussion regarding possible experimental tests, see
I.
Pikovski
,
M. R.
Vanner
,
M.
Aspelmeyer
,
M. S.
Kim
, and
Č.
Brukner
, “
Probing Planck-scale physics with quantum optics
,”
Nature Phys.
8
,
393
397
(
2012
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.