Gaussian fluctuations (or Gaussian noise) appear in almost all measurements in physics. Here, a concise and self-contained introduction to thermal Gaussian noise is presented. Our analysis in the frequency domain centers on thermal fluctuations of the position of a particle bound in a one-dimensional harmonic potential, which in this case is a microcantilever immersed in a bath of room-temperature gas. Position fluctuations of the microcantilever, detected by the optical beam deflection technique, are then fed into a lock-in amplifier to measure the probability distribution and spectral properties of the fluctuations. The lock-in amplifier measurement is designed to emphasize the frequency-domain properties of Gaussian noise. The discussion here can be complementary to a discussion of Gaussian fluctuations in the time domain.

1.
F.
Reif
,
Fundamentals of Statistical and Thermal Physics
(
McGraw-Hill
,
Singapore
,
1965
).
2.
F.
Gittes
and
C. F.
Schmidt
, “
Thermal noise limitations on micromechanical experiments
,”
Eur. Biophys. J.
27
,
75
81
(
1998
).
3.
Y.
Kraftmakher
, “
Two student experiments on electrical fluctuations
,”
Am. J. Phys.
63
,
932
935
(
1995
).
4.
M.
Shusteff
,
T. P.
Burg
, and
S. R.
Manalis
, “
Measuring Boltzmann's constant with a low-cost atomic force microscope: An undergraduate experiment
,”
Am. J. Phys.
74
,
873
880
(
2006
).
5.
R.
Kubo
,
M.
Toda
, and
N.
Hashitsume
,
Statistical Physics II: Nonequilibrium Statistical Mechanics
(
Springer-Verlag
,
Berlin
,
1995
).
6.
The central limit theorem of probability is a more general statement of the Gaussian law of errors.
7.
P.
Kittel
,
W. R.
Hackleman
, and
R. J.
Donnelly
, “
Undergraduate experiment on noise thermometry
,”
Am. J. Phys.
46
,
94
100
(
1978
).
8.
T. J.
Ericson
, “
Electrical noise and the measurement of absolute temperature, Boltzmann's constant and Avogadro's number
,”
Phys. Educ.
23
,
112
116
(
1988
).
9.
J. C.
Rodriguez-Luna
and
J.
de Urquijo
, “
A simple, sensitive circuit to measure Boltzmann's constant from Johnson's noise
,”
Eur. J. Phys.
31
,
675
679
(
2010
).
10.
A.
Bergmann
,
D.
Feigl
,
D.
Kuhn
,
M.
Schaupp
,
G.
Quast
,
K.
Busch
,
L.
Eichner
, and
J.
Schumacher
, “
A low-cost AFM setup with an interferometer for undergraduates and secondary-school students
,”
Eur. J. Phys.
34
,
901
914
(
2013
).
11.
J. H.
Scofield
, “
Frequency-domain description of a lock-in amplifier
,”
Am. J. Phys.
62
,
129
132
(
1994
).
12.
B. G.
de Grooth
, “
A simple model for Brownian motion leading to the Langevin equation
,”
Am. J. Phys.
67
,
1248
1252
(
1999
).
13.
P.
Grassia
, “
Dissipation, fluctuations, and conservation laws
,”
Am. J. Phys.
69
,
113
119
(
2001
).
14.
D. K. C.
MacDonald
, “
Spontaneous fluctuations
,”
Rep. Prog. Phys.
12
,
56
81
(
1949
).
15.
C. V.
Heer
,
Statistical Mechanics, Kinetic Theory, and Stochastic Processes
(
Academic Press
,
New York
,
1972
).
16.
R(t) is approximated to be completely uncorrelated in time, R(t)R(s)=σR2δ(ts), because the impacts occur at a time scale much shorter than the particle (microcantilever) can respond.
17.
M. C.
Wang
and
G. E.
Uhlenbeck
, “
On the theory of the Brownian motion II
,”
Rev. Mod. Phys.
17
,
323
342
(
1945
).
18.
D. E.
Newland
,
An Introduction to Random Vibrations, Spectral and Wavelet Analysis
(
DoverPublications
,
New York
,
2005
).
19.
C.
Kittel
,
Elementary Statistical Physics
(
John Wiley & Sons
,
New York
,
1960
).
20.
G.
Meyer
and
N. M.
Amer
, “
Novel optical approach to atomic force microscopy
,”
Appl. Phys. Lett.
53
,
1045
1047
(
1988
).
21.
A. N.
Cleland
,
Foundations of Nanomechanics: From Solid-State Theory to Device Applications
(
Springer-Verlag
,
Berlin
,
2003
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.