Satellites in low Earth orbits must accurately conserve their orbital eccentricity, since a decrease in perigee of only 5–10% would cause them to crash. However, these satellites are subject to gravitational perturbations from Earth's multipole moments, the Moon, and the Sun that are not spherically symmetric and hence do not conserve angular momentum, especially over the tens of thousands of orbits made by a typical satellite. Why then do satellites not crash? We describe a vector-based analysis of the long-term behavior of satellite orbits and apply this to several toy systems containing a single non-Keplerian perturbing potential. If only the quadrupole (or J2) potential from the Earth's equatorial bulge is present, all near-circular orbits are stable. If only the octupole (or J3) potential is present, all such orbits crash. If only the lunar or solar potential is present, all near-circular orbits with inclinations to the ecliptic exceeding 39° are unstable. We describe the behavior of satellites in the simultaneous presence of all of these perturbations and show that almost all low Earth orbits are stable because of an accidental property of the dominant quadrupole potential. We also relate these results to the phenomenon of Lidov–Kozai oscillations.

1.
D. G.
King-Hele
, “
The effect of the Earth's oblateness on the orbit of a near satellite
,”
Proc. R. Soc. A
247
,
49
72
(
1958
).
2.
P. E.
El'yasberg
,
Introduction to the Theory of Flight of Artificial Earth Satellites
. Moscow:
Izdatel'stvo Nauka Glavnaya Redaktsiya
. Translated by the Israel Program for Scientific Translations (
1965
).
3.
J.
Moser
, “
Regularization of Kepler's problem and the averaging method on a manifold
,”
Commun. Pure Appl. Math.
23
,
609
636
(
1970
).
4.
M.
Kummer
, “
On the three-dimensional lunar problem and other perturbation problems of the Kepler problem
,”
J. Math. Anal. Appl.
93
,
142
194
(
1983
).
5.
N. K.
Pavlis
,
S. A.
Holmes
,
S. C.
Kenyon
, and
J. K.
Factor
, “
The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)
,”
J. Geophys. Res.-Sol. Ea.
117
,
B04406
(
2012
).
6.
B.
Luzum
,
N.
Capitaine
,
A.
Fienga
,
W.
Folkner
,
T.
Fukushima
,
J.
Hilton
,
C.
Hohenkerk
,
G.
Krasinsky
,
G.
Petit
,
E.
Pitjeva
,
M.
Soffel
, and
P.
Wallace
, “
The IAU 2009 system of astronomical constants: The report of the IAU working group on numerical standards for Fundamental Astronomy
,”
Celest. Mech. Dyn. Astron.
110
,
293
304
(
2011
).
7.
M.
Milankovich
, “
Über die verwendung vektorieller bahnelemente in der störungsrechnung
,”
Bull. Serb. Acad. Math. Nat. A
6
,
1
(
1939
).
8.
S.
Tremaine
,
J.
Touma
, and
F.
Namouni
, “
Satellite dynamics on the Laplace surface
,”
Astron. J.
137
,
3706
3717
(
2009
).
9.
See, for example,
B.
Garfinkel
, “
On the motion of a satellite in the vicinity of the critical inclination
,”
Astron. J.
65
, pp.
624
627
(
1960
);
A. G.
Lubowe
, “
How critical is the critical inclination?
,”
Celestial Mech.
1
,
6
10
(
1969
).
10.
M. L.
Lidov
, “
The approximate analysis of the evolution of the orbits of artificial satellites
,” in
Problems of the Motion of Artificial Celestial Bodies
(
Academy of Sciences
,
Moscow
,
1961
), pp.
119
134
.
11.
B.
Katz
and
S.
Dong
, “
Exponential growth of eccentricity in secular theory
,” e-print arXiv:1105.3953 (
2011
).
12.
Y.
Kozai
, “
Secular perturbations of asteroids with high inclination and eccentricity
,”
Astron. J.
67
,
591
598
(
1962
).
13.
H.
Kinoshita
and
H.
Nakai
, “
General solution of the Kozai mechanism
,”
Celest. Mech. Dyn. Astron.
98
,
67
74
(
2007
).
14.
E. B.
Ford
,
B.
Kozinsky
, and
F. A.
Rasio
, “
Secular evolution of hierarchical triple star systems
,”
Astrophys. J.
535
,
385
401
(
2000
).
15.
B.
Katz
,
S.
Dong
, and
R.
Malhotra
, “
Long-term cycling of Kozai-Lidov cycles: Extreme eccentricities and inclinations excited by a distant eccentric perturber
,”
Phys. Rev. Lett.
107
,
181101
(
2011
).
16.
S.
Naoz
,
W. M.
Farr
,
Y.
Lithwick
,
F. A.
Rasio
, and
J.
Teyssandier
, “
Secular dynamics in hierarchical three-body systems
,”
Mon. Not. Roy. Astron. Soc.
431
,
2155
2171
(
2013
).
17.
V.
Carruba
,
J. A.
Burns
,
P. D.
Nicholson
, and
B. J.
Gladman
, “
On the inclination distribution of the Jovian irregular satellites
,”
Icarus
158
,
434
449
(
2002
).
18.
D.
Nesvorný
,
J. L. A.
Alvarellos
,
L.
Dones
, and
H. F.
Levison
, “
Orbital and collisional evolution of the irregular satellites
,”
Astron. J.
126
,
398
429
(
2003
).
19.
M.
Holman
,
J.
Touma
, and
S.
Tremaine
, “
Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B
,”
Nature
386
,
254
256
(
1997
).
20.
K. A.
Innanen
,
J. Q.
Zheng
,
S.
Mikkola
, and
M. J.
Valtonen
, “
The Kozai mechanism and the stability of planetary orbits in binary star systems
,”
Astron. J.
113
,
1915
1919
(
1997
).
21.
T.
Mazeh
,
Y.
Krymolowski
, and
G.
Rosenfeld
, “
The high eccentricity of the planet orbiting 16 Cygni B
,”
Astrophys. J.
477
,
L103
(
1997
).
22.
J. T.
Wright
,
O.
Fakhouri
,
G. W.
Marcy
,
E.
Han
,
Y.
Feng
,
J. A.
Johnson
,
A. W.
Howard
,
D. A.
Fischer
,
J. A.
Valenti
,
J.
Anderson
, and
N.
Piskunov
, “
The exoplanet orbit database
,”
Publ. Astron. Soc. Pacific
123
,
412
422
(
2011
).
23.
Y.
Wu
and
N.
Murray
, “
Planet migration and binary companions: the case of HD 80606b
,”
Astrophys. J.
589
,
605
614
(
2003
).
24.
D.
Fabrycky
and
S.
Tremaine
, “
Shrinking binary and planetary orbits by Kozai cycles with tidal friction
,”
Astrophys. J.
669
,
1298
1315
(
2007
).
25.
A.
Tokovinin
,
S.
Thomas
,
M.
Sterzik
, and
S.
Udry
, “
Tertiary companions to close spectroscopic binaries
,”
Astronon. Astrophys.
450
,
681
693
(
2006
).
26.
T. A.
Thompson
, “
Accelerating compact object mergers in triple systems with the Kozai resonance: a mechanism for “prompt” Type Ia supernovae, gamma-ray bursts, and other exotica
,”
Astrophys. J.
741
,
82
(
2011
).
27.
D.
Kushnir
,
B.
Katz
,
S.
Dong
,
E.
Livne
, and
R.
Fernández
, “
Head-on collisions of white dwarfs in triple systems could explain Type Ia supernova
,”
Astrophys. J.
778
,
L37
(
2013
).
28.
M. C.
Begelman
,
R. D.
Blandford
, and
M. J.
Rees
, “
Massive black hole binaries in active galactic nuclei
,”
Nature
287
,
307
309
(
1980
).
29.
O.
Blaes
,
M. H.
Lee
, and
A.
Socrates
, “
The Kozai mechanism and the evolution of binary supermassive black holes
,”
Astrophys. J.
578
,
775
786
(
2002
).
30.
M. A.
Vashkov'yak
, “
Stability of circular satellite orbits for combined action of perturbations from an external body and from the noncentrality of the planetary gravitational field
,”
Cosm. Res.
12
,
757
(
1974
).
31.
J. F.
Palacián
, “
Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field
,”
Celest. Mech. Dyn. Astron.
98
,
219
249
(
2007
).
32.
P.
Musen
, “
Special perturbations of the vectorial elements
,”
Astron. J.
59
,
262
267
(
1954
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.