In the coherent state of the harmonic oscillator, the probability density is that of the ground state subjected to an oscillation along a classical trajectory. Senitzky and others pointed out that there are states of the harmonic oscillator corresponding to an identical oscillatory displacement of the probability density of any energy eigenstate. These generalizations of the coherent state are rarely discussed, yet they furnish an interesting set of quantum states of light that combine features of number states and coherent states. Here, we give an elementary account of the quantum optics of generalized coherent states.

1.
R.
Loudon
,
The Quantum Theory of Light
, 3rd. ed. (
Oxford U.P.
,
Oxford
,
2000
).
2.
E.
Schrödinger
, “
Der stetige Übergang von der Mikro- zur Makromechanik
,”
Naturwissenschaften
14
,
664
666
(
1926
).
3.
I. R.
Senitzky
, “
Harmonic oscillator wave functions
,”
Phys Rev.
95
,
1115
1116
(
1954
).
4.
M.
Boiteux
and
A.
Levelut
, “
Semicoherent states
,”
J. Math. Phys. A: Math., Nucl. Gen.
6
,
589
596
(
1973
).
5.
M. F.
Marhic
, “
Oscillating Hermite-Gaussian wave functions of the harmonic oscillator
,”
Lett. Nuovo Cim.
22
,
376
378
(
1978
).
6.
S. M.
Roy
and
V.
Singh
, “
Generalized coherent states and the uncertainty principle
,”
Phys. Rev. D
25
,
3413
3416
(
1982
).
7.
F. A. M.
de Oliveira
,
M. S.
Kim
,
P. L.
Knight
, and
V.
Buzek
, “
Properties of displaced number states
,”
Phys. Rev. A
41
,
2645
2652
(
1990
).
8.
M. M.
Nieto
, “
Displaced and squeezed number states
,”
Phys. Lett. A
229
,
135
143
(
1997
).
9.
I.
Fujiwara
and
K.
Miyoshi
, “
Pulsating states for quantal harmonic oscillator
,”
Prog. Theor. Phys.
64
,
715
718
(
1980
).
10.
M. E.
Marhic
and
P.
Kumar
, “
Squeezed states with a thermal photon distribution
,”
Opt. Commun.
76
,
143
146
(
1990
).
11.
M. J.
Englefield
, “
A solution of a Fokker-Planck equation
,”
Physica A
167
,
877
886
(
1990
).
12.
C. W.
Wong
, “
Nonspreading wave packets
,”
Am. J. Phys.
64
,
792
799
(
1996
).
13.
S. I.
Kryuchkov
,
S. K.
Suslov
, and
J. M.
Vega-Guzmán
, “
The minimum-uncertainty squeezed states for atoms and photons in a cavity
,”
J. Phys. B: At. Mol. Opt. Phys.
46
,
104007
1
(
2013
).
14.
A.
Mahalov
and
S. K.
Suslov
, “
Wigner function approach to oscillating solutions of the 1D-quintic nonlinear Schrödinger equation
,”
J. Nonlinear Opt. Phys. Mater.
22
,
1350013
1
(
2013
).
15.
A.
Mahalov
,
E.
Suazo
, and
S. K.
Suslov
, “
Spiral Laser beams in inhomogeneous media
,”
Opt. Lett.
38
,
2763
2766
(
2013
).
16.
C. C.
Yan
, “
Soliton like solutions of the Schrödinger equation for a simple harmonic oscillator
,”
Am. J. Phys.
62
,
147
151
(
1994
).
17.
R. M.
López
,
S. K.
Suslov
, and
J. M.
Vega-Guzmán
, “
On a hidden symmetry of quantum harmonic oscillators
,”
J. Differ. Eq. Appl.
19
,
543
554
(
2013
).
18.
It may be of interest to note how the present author stumbled upon the generalized coherent states [Eq. (2)]. The Bohmian trajectories of the quantum particle in a coherent state are described in
P. R.
Holland
,
The Quantum Theory of Motion
(
Cambridge U.P.
,
Cambridge
,
1993
), Sec. 4.9. One can mathematically set up the following problem: are there other quantum states in which the Bohmian trajectories are the same as in the coherent state? The solution to this problem gives the generalized coherent states.
19.
J.
Plebanski
, “
Wave functions of a harmonic oscillator
,”
Phys. Rev.
101
,
1825
1826
(
1956
).
20.
M. V.
Satyanarayana
, “
Generalized coherent states and generalized squeezed coherent states
,”
Phys. Rev. D
32
,
400
404
(
1985
).
21.
K. B.
Møller
,
T. G.
Jørgehsen
, and
J. P.
Dahl
, “
Displaced squeezed number states: Position space representation, inner product, and some applications
,”
Phys. Rev. A
54
,
5378
5385
(
1996
).
22.
M. D.
Crisp
, “
Application of the displaced oscillator basis in quantum optics
,”
Phys. Rev. A
46
,
4138
4149
(
1992
).
23.
E. K.
Irish
,
J.
Gea-Banacloche
,
I.
Martin
, and
K. C.
Schwab
, “
Dynamics of a two-level system coupled to a high-frequency quantum oscillator
,”
Phys. Rev. B
72
,
195410
1
(
2005
).
24.
E. K.
Irish
, “
Generalized rotating-wave approximation for arbitrarily large coupling
,”
Phys. Rev. Lett.
99
,
173601
1
(
2007
).
25.
D. P. S.
McCutcheon
and
A.
Nazir
, “
Quantum dot Rabi rotations beyond the weak exciton-phonon coupling regime
,”
New J. Phys.
12
,
113042
1
(
2010
).
26.
Contrary to the impression given to many students by vague references to a “correspondence principle,” most quantum states never look classical, even in the limit of infinite energy and infinite quantum numbers.
27.
L.
Mandel
and
E.
Wolf
,
Optical Coherence and Quantum Optics
(
Cambridge U.P.
,
Cambridge
,
1995
).
28.
E.
Merzbacher
,
Quantum Mechanics
3rd. ed. (
Wiley
,
New York
,
1998
), Secs. 14.6 and 23.4.
29.
F.
Ziesel
,
T.
Ruster
,
A.
Walther
,
H.
Kaufmann
,
S.
Dawkins
,
K.
Singer
,
F.
Schmidt-Kaler
, and
U. G.
Poschinger
, “
Experimental creation and analysis of displaced number states
,”
J. Phys. B: At. Mol. Opt. Phys.
46
,
104008
1
(
2013
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.