In the coherent state of the harmonic oscillator, the probability density is that of the ground state subjected to an oscillation along a classical trajectory. Senitzky and others pointed out that there are states of the harmonic oscillator corresponding to an identical oscillatory displacement of the probability density of any energy eigenstate. These generalizations of the coherent state are rarely discussed, yet they furnish an interesting set of quantum states of light that combine features of number states and coherent states. Here, we give an elementary account of the quantum optics of generalized coherent states.
REFERENCES
1.
2.
E.
Schrödinger
, “Der stetige Übergang von der Mikro- zur Makromechanik
,” Naturwissenschaften
14
, 664
–666
(1926
).3.
I. R.
Senitzky
, “Harmonic oscillator wave functions
,” Phys Rev.
95
, 1115
–1116
(1954
).4.
M.
Boiteux
and A.
Levelut
, “Semicoherent states
,” J. Math. Phys. A: Math., Nucl. Gen.
6
, 589
–596
(1973
).5.
M. F.
Marhic
, “Oscillating Hermite-Gaussian wave functions of the harmonic oscillator
,” Lett. Nuovo Cim.
22
, 376
–378
(1978
).6.
S. M.
Roy
and V.
Singh
, “Generalized coherent states and the uncertainty principle
,” Phys. Rev. D
25
, 3413
–3416
(1982
).7.
F. A. M.
de Oliveira
, M. S.
Kim
, P. L.
Knight
, and V.
Buzek
, “Properties of displaced number states
,” Phys. Rev. A
41
, 2645
–2652
(1990
).8.
M. M.
Nieto
, “Displaced and squeezed number states
,” Phys. Lett. A
229
, 135
–143
(1997
).9.
I.
Fujiwara
and K.
Miyoshi
, “Pulsating states for quantal harmonic oscillator
,” Prog. Theor. Phys.
64
, 715
–718
(1980
).10.
M. E.
Marhic
and P.
Kumar
, “Squeezed states with a thermal photon distribution
,” Opt. Commun.
76
, 143
–146
(1990
).11.
M. J.
Englefield
, “A solution of a Fokker-Planck equation
,” Physica A
167
, 877
–886
(1990
).12.
C. W.
Wong
, “Nonspreading wave packets
,” Am. J. Phys.
64
, 792
–799
(1996
).13.
S. I.
Kryuchkov
, S. K.
Suslov
, and J. M.
Vega-Guzmán
, “The minimum-uncertainty squeezed states for atoms and photons in a cavity
,” J. Phys. B: At. Mol. Opt. Phys.
46
, 104007
–1
(2013
).14.
A.
Mahalov
and S. K.
Suslov
, “Wigner function approach to oscillating solutions of the 1D-quintic nonlinear Schrödinger equation
,” J. Nonlinear Opt. Phys. Mater.
22
, 1350013
–1
(2013
).15.
A.
Mahalov
, E.
Suazo
, and S. K.
Suslov
, “Spiral Laser beams in inhomogeneous media
,” Opt. Lett.
38
, 2763
–2766
(2013
).16.
C. C.
Yan
, “Soliton like solutions of the Schrödinger equation for a simple harmonic oscillator
,” Am. J. Phys.
62
, 147
–151
(1994
).17.
R. M.
López
, S. K.
Suslov
, and J. M.
Vega-Guzmán
, “On a hidden symmetry of quantum harmonic oscillators
,” J. Differ. Eq. Appl.
19
, 543
–554
(2013
).18.
It may be of interest to note how the present author stumbled upon the generalized coherent states [Eq. (2)]. The Bohmian trajectories of the quantum particle in a coherent state are described in
P. R.
Holland
, The Quantum Theory of Motion
(Cambridge U.P.
, Cambridge
, 1993
), Sec. 4.9. One can mathematically set up the following problem: are there other quantum states in which the Bohmian trajectories are the same as in the coherent state? The solution to this problem gives the generalized coherent states.19.
J.
Plebanski
, “Wave functions of a harmonic oscillator
,” Phys. Rev.
101
, 1825
–1826
(1956
).20.
M. V.
Satyanarayana
, “Generalized coherent states and generalized squeezed coherent states
,” Phys. Rev. D
32
, 400
–404
(1985
).21.
K. B.
Møller
, T. G.
Jørgehsen
, and J. P.
Dahl
, “Displaced squeezed number states: Position space representation, inner product, and some applications
,” Phys. Rev. A
54
, 5378
–5385
(1996
).22.
M. D.
Crisp
, “Application of the displaced oscillator basis in quantum optics
,” Phys. Rev. A
46
, 4138
–4149
(1992
).23.
E. K.
Irish
, J.
Gea-Banacloche
, I.
Martin
, and K. C.
Schwab
, “Dynamics of a two-level system coupled to a high-frequency quantum oscillator
,” Phys. Rev. B
72
, 195410
–1
(2005
).24.
E. K.
Irish
, “Generalized rotating-wave approximation for arbitrarily large coupling
,” Phys. Rev. Lett.
99
, 173601
–1
(2007
).25.
D. P. S.
McCutcheon
and A.
Nazir
, “Quantum dot Rabi rotations beyond the weak exciton-phonon coupling regime
,” New J. Phys.
12
, 113042
–1
(2010
).26.
Contrary to the impression given to many students by vague references to a “correspondence principle,” most quantum states never look classical, even in the limit of infinite energy and infinite quantum numbers.
27.
L.
Mandel
and E.
Wolf
, Optical Coherence and Quantum Optics
(Cambridge U.P.
, Cambridge
, 1995
).28.
E.
Merzbacher
, Quantum Mechanics
3rd. ed. (Wiley
, New York
, 1998
), Secs. 14.6 and 23.4.29.
F.
Ziesel
, T.
Ruster
, A.
Walther
, H.
Kaufmann
, S.
Dawkins
, K.
Singer
, F.
Schmidt-Kaler
, and U. G.
Poschinger
, “Experimental creation and analysis of displaced number states
,” J. Phys. B: At. Mol. Opt. Phys.
46
, 104008
–1
(2013
).© 2014 American Association of Physics Teachers.
2014
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.