Unlike passive Brownian particles, active Brownian particles, also known as microswimmers, propel themselves with directed motion and thus drive themselves out of equilibrium. Understanding their motion can provide insight into out-of-equilibrium phenomena associated with biological examples such as bacteria, as well as with artificial microswimmers. We discuss how to mathematically model their motion using a set of stochastic differential equations and how to numerically simulate it using the corresponding set of finite difference equations both in homogenous and complex environments. In particular, we show how active Brownian particles do not follow the Maxwell-Boltzmann distribution—a clear signature of their out-of-equilibrium nature—and how, unlike passive Brownian particles, microswimmers can be funneled, trapped, and sorted.

1.
S. J.
Ebbens
and
J. R.
Howse
, “
In pursuit of propulsion at the nanoscale
,”
Soft Matter
6
,
726
738
(
2010
).
2.
W. C. K.
Poon
, “
From Clarkia to Escherichia and Janus: The physics of natural and synthetic active colloids
,” e-print arXiv:1306.4799 (
2013
).
3.
U.
Erdmann
,
W.
Ebeling
,
L.
Schimansky-Geier
, and
F.
Schweitzer
, “
Brownian particles far from equilibrium
,”
Eur. Phys. J. B: Condens. Matt. Comp. Sys.
15
,
105
113
(
2000
).
4.
P.
Hänggi
and
F.
Marchesoni
, “
Artificial Brownian motors: Controlling transport on the nanoscale
,”
Rev. Mod. Phys.
81
,
387
442
(
2009
).
5.
H. C.
Berg
,
E. coli in Motion
(
Springer
,
Heidelberg
,
2004
).
6.
D. B.
Weibel
,
P.
Garstecki
,
D.
Ryan
,
W. R.
DiLuzio
,
M.
Mayer
,
J. E.
Seto
, and
G. M.
Whitesides
, “
Microoxen: Microorganisms to move microscale loads
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
11963
11967
(
2005
).
7.
R. M.
Ford
and
R. W.
Harvey
, “
Role of chemotaxis in the transport of bacteria through saturated porous media
,”
Adv. Water Res.
30
,
1608
1617
(
2007
).
8.
W.
Yang
,
V. R.
Misko
,
K.
Nelissen
,
M.
Kong
, and
F. M.
Peeters
, “
Using self-driven microswimmers for particle separation
,”
Soft Matter
8
,
5175
5179
(
2012
).
9.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
, “
Propulsion of a molecular machine by asymmetric distribution of reaction products
,”
Phys. Rev. Lett.
94
,
220801
1
(
2005
).
10.
W. F.
Paxton
,
A.
Sen
, and
T. E.
Mallouk
, “
Motility of catalytic nanoparticles through self-generated forces
,”
Chem. Eur. J.
11
,
6462
6470
(
2005
).
11.
R.
Dreyfus
,
J.
Baudry
,
M. L.
Roper
,
M.
Fermigier
,
H. A.
Stone
, and
J.
Bibette
, “
Microscopic artificial swimmers
,”
Nature
437
,
862
865
(
2005
).
12.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
, “
Self-motile colloidal particles: From directed propulsion to random walk
,”
Phys. Rev. Lett.
99
,
048102
1
(
2007
).
13.
P.
Tierno
,
R.
Golestanian
,
I.
Pagonabarraga
, and
F.
Sagués
, “
Magnetically actuated colloidal microswimmers
,”
J. Phys. Chem. B
112
,
16525
16528
(
2008
).
14.
J.
Palacci
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
, “
Sedimentation and effective temperature of active colloidal suspensions
,”
Phys. Rev. Lett.
105
,
088304
1
(
2010
).
15.
M. N.
Popescu
,
S.
Dietrich
,
M.
Tasinkevych
, and
J.
Ralston
, “
Phoretic motion of spheroidal particles due to self-generated solute gradients
,”
Eur. Phys. J. E
31
,
351
367
(
2010
).
16.
G.
Volpe
,
I.
Buttinoni
,
D.
Vogt
,
H.-J.
Kümmerer
, and
C.
Bechinger
, “
Microswimmers in patterned environments
,”
Soft Matter
7
,
8810
8815
(
2011
).
17.
A.
Búzás
,
L.
Kelemen
,
A.
Mathesz
,
L.
Oroszi
,
G.
Vizsnyiczai
,
T.
Vicsek
, and
P.
Ormos
, “
Light sailboats: Laser driven autonomous microrobots
,”
Appl. Phys. Lett.
101
,
041111
1
(
2012
).
18.
I.
Buttinoni
,
G.
Volpe
,
F.
Kümmel
,
G.
Volpe
, and
C.
Bechinger
, “
Active Brownian motion tunable by light
,”
J. Phys.: Condens. Matter
24
,
284129
1
(
2012
).
19.
N.
Koumakis
,
A.
Lepore
,
C.
Maggi
, and
R.
Di Leonardo
, “
Targeted delivery of colloids by swimming bacteria
,”
Nat. Commun.
4
,
2588
1
(
2013
).
20.
D.
Babič
,
C.
Schmitt
, and
C.
Bechinger
, “
Colloids as model systems for problems in statistical physics
,”
Chaos
15
,
026114
1
(
2005
).
21.
F.
Schweitzer
,
Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences
(
Springer
,
Heidelberg
,
2007
).
22.
See supplementary material at http://dx.doi.org/10.1119/1.4870398 for the Matlab codes.
23.
Scilab, open source software for numerical computation, <www.scilab.org/>.
24.
GNU Octave software, <www.gnu.org/software/octave/>.
25.
S.
van Teeffelen
and
H.
Löwen
, “
Dynamics of a Brownian circle swimmer
,”
Phys. Rev. E
78
,
020101
1
(
2008
).
26.
M.
Mijalkov
and
G.
Volpe
, “
Sorting of chiral microswimmers
,”
Soft Matter
9
,
6376
6381
(
2013
).
27.
F.
Kümmel
,
B.
Ten Hagen
,
R.
Wittkowski
,
I.
Buttinoni
,
R.
Eichhorn
,
G.
Volpe
,
H.
Löwen
, and
C.
Bechinger
, “
Circular motion of asymmetric self-propelling particles
,”
Phys. Rev. Lett.
110
,
198302
1
(
2013
).
28.
W. T.
Coffey
,
Yu. P.
Kalmykov
, and
J. T.
Waldron
,
The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry, and Electrical Engineering
(
World Scientific
,
New York
,
2004
).
29.
E. M.
Purcell
, “
Life at low Reynolds number
,”
Am. J. Phys.
45
,
3
11
(
1977
).
30.
G.
Volpe
and
G.
Volpe
, “
Simulation of a Brownian particle in an optical trap
,”
Am. J. Phys.
81
,
224
230
(
2013
).
31.
P. E.
Kloeden
and
R. A.
Pearson
,
Numerical Solution of Stochastic Differential Equations
(
Springer
,
Heidelberg
,
1999
).
32.
K.
Franke
and
H.
Gruler
, “
Galvanotaxis of human granulocytes: Electric field jump studies
,”
Eur. Biophys. J.
18
,
334
346
(
1990
).
33.
G. E.
Uhlenbeck
and
L. S.
Ornstein
, “
On the theory of the Brownian motion
,”
Phys. Rev.
36
,
823
841
(
1930
).
34.
E.
Lauga
,
W. R.
DiLuzio
,
G. M.
Whitesides
, and
H. A.
Stone
, “
Swimming in circles: Motion of bacteria near solid boundaries
,”
Biophys. J.
90
,
400
412
(
2006
).
35.
B. M.
Friedrich
and
F.
Jülicher
, “
Steering chiral swimmers along noisy helical paths
,”
Phys. Rev. Lett.
103
,
068102
1
(
2009
).
36.
R.
Di Leonardo
,
D.
Dell'Arciprete
,
L.
Angelani
, and
V.
Iebba
, “
Swimming with an image
,”
Phys. Rev. Lett.
106
,
038101
1
(
2011
).
37.
Ting -Wei
Su
,
Liang
Xue
, and
Aydogan
Ozcan
, “
High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
16018
16022
(
2012
).
38.
C. D.
Chin
,
V.
Linder
, and
S. K.
Sia
, “
Lab-on-a-chip devices for global health: Past studies and future opportunities
,”
Lab Chip
7
,
41
57
(
2007
).
39.
A.
Kaiser
,
K.
Popowa
,
H. H.
Wensink
, and
H.
Löwen
, “
Capturing self-propelled particles in a moving microwedge
,”
Phys. Rev. E
88
,
022311
1
(
2013
).
40.
M. B.
Wan
,
C. J. O.
Reichhardt
,
Z.
Nussinov
, and
C.
Reichhardt
, “
Rectification of swimming bacteria and self-driven particle systems by arrays of asymmetric barriers
,”
Phys. Rev. Lett.
101
,
018102
1
(
2008
).
41.
C.
Reichhardt
and
C. J. O.
Reichhardt
, “
Dynamics and separation of circularly moving particles in asymmetrically patterned arrays
,”
Phys. Rev. E
88
,
042306
1
(
2013
).
42.
S.
Ahuja
, editor,
Chiral Separation Methods for Pharmaceutical and Biotechnological Products
(
John Wiley and Sons, Inc.
,
Hoboken, NJ
,
2011
).
43.
T.
Carlsson
,
T.
Ekholm
, and
C.
Elvingson
, “
Algorithm for generating a Brownian motion on a sphere
,”
J. Phys. A: Math. Theor.
43
,
505001
1
(
2010
).
44.
M. X.
Fernandes
and
J.
García de la Torre
, “
Brownian dynamics simulation of rigid particles of arbitrary shape in external fields
,”
Biophys. J.
83
,
3039
3048
(
2002
).
45.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
Amsterdam
,
2001
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.