The problem of finding all the orbits of test particles in the exterior Schwarzschild black hole metric has an exact solution in terms of elliptic functions. In this paper, we develop in detail the case of massless particles, including a derivation of an exact formula for the deflection of light. It is shown that the mass of the black hole can be determined from a simple relationship between the angular deflection and the time delay of neighboring light rays.

1.
J.
Droste
, “
The Field of a Single Centre in Einstein's Theory of Gravitation, and the Motion of a Particle in that Field
,” Koninklijke Nederlandsche Akademie van Wetenshappen Proceedings
19
,
197
1563
(
1917
). Reprinted in
Gen. Rel. Grav.
34, 1545–1563 (2002).
2.
Y.
Hagihara
, “
Theory of the Relativistic Trajectories in a Gravitational Field of Schwarzschild
,”
Jpn. J. Astron. Geophys.
8
,
67
176
(
1931
). Available on the Smithsonian/NASA Astrophysics Data System, <http://articles.adsabs.harvard.edu/full/1930JaJAG…8…67H/>.
3.
B.
Mielnik
and
J.
Plebański
, “
A study of geodesic motion in the field of Schwarzschild's solution
,”
Acta Phys. Polon.
21
,
239
268
(
1962
).
4.
C.
Darwin
, “
The gravity field of a particle
,”
Proc. Roy. Soc. A
249
,
180
194
(
1959
).
5.
S.
Chandrasekhar
,
The Mathematical Theory of Black Holes
(
Clarendon Press
,
Oxford
,
1983
).
6.
A.
Čadež
and
U.
Kostić
, “
Optics in the Schwarzschild spacetime
,”
Phys. Rev. D
72
,
104024
1
(
2005
).
7.
T.
Müller
, “
Einstein rings as a tool for estimating distances and the mass of a Schwarzschild black hole
,”
Phys. Rev. D
77
,
124042
1
(
2008
).
8.
G.
Gibbons
and
M.
Vyska
, “
The application of Weierstrass elliptic functions to Schwarzschild null geodesics
,”
Class. Quant. Grav.
29
,
065016
(
2012
), e-print arXiv:1110.6508v2 \gr-qc].
9.
E.
Hackmann
and
C.
Lämmerzahl
, “
Geodesic equation in Schwarzschild-(anti-)de Sitter space-times: Analytical solutions and applications
,”
Phys. Rev. D
78
,
024035
1
(
2008
).
10.
E.
Hackmann
,
B.
Hartmann
,
C.
Lämmerzahl
, and
P.
Sirimachan
, “
Complete set of solutions of the geodesic equation in the space-time of a Schwarzschild black hole pierced by a cosmic string
,”
Phys. Rev. D
81
,
064016
1
(
2010
).
11.
C.
Møller
,
The Theory of Relativity
, 2nd ed. (
Clarendon Press
,
Oxford
,
1972
).
12.
B. F.
Schutz
,
A First Course in General Relativity
, 2nd ed. (
Cambridge U.P.
,
Cambridge
,
2009
).
13.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
, 2nd ed. (
W. H. Freeman
,
New York
,
1973
).
14.
W.
Rindler
,
Relativity: Special, General, and Cosmological
, 2nd ed. (
Oxford U. P.
,
New York
,
2006
).
15.
S.
Carroll
,
Spacetime and Geometry: An Introduction to General Relativity
(
Pearson Addison Wesley
,
San Francisco
,
2004
).
16.
H.
Stephani
,
Relativity: An Introduction to Special and General Relativity
(
Cambridge U. P.
,
Cambridge
,
2004
).
17.
D. F.
Lawden
,
Elliptic Functions and Applications
, Applied Mathematical Sciences v. 80 (
Springer Verlag
,
New York
,
1989
). We follow Lawden's convention on the use of the modulus k throughout this paper; other references prefer the parameter m = k2 instead.
18.
T. E.
Baker
and
A.
Bill
, “
Jacobi elliptic functions and the complete solution to the bead on the hoop problem
,”
Am. J. Phys.
80
,
506
514
(
2012
).
19.
E. T.
Whittaker
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
, 4th ed. (
Dover
,
New York
,
1944
).
20.
W. D.
MacMillan
,
Theoretical Mechanics: Statics and Dynamics of a Particle
(
McGraw-Hill
,
New York
,
1927
).
21.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series and Products
, 4th ed. (
Academic Press
,
New York
,
1980
).
22.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
U.S. Government Printing Office
,
Washington
,
1972
). Available electronically at <http://www.nr.com/aands/> or <http://people.math.sfu.ca/~cbm/aands/>. See also the NIST Digital Library of Mathematical Functions at <http://dlmf.nist.gov/>.
23.
R.
Epstein
and
I. I.
Shapiro
, “
Post-post-Newtonian deflection of light by the Sun
,”
Phys. Rev. D
22
,
2947
2949
(
1980
).
24.
J.
Bodenner
and
C. M.
Will
, “
Deflection of light to second order: A tool for illustrating principles of general relativity
,”
Am. J. Phys.
71
,
770
773
(
2003
).
25.
Gaia Web site, <http://sci.esa.int/gaia/>. Unfortunately, the SIMLite Astrometric Observatory, which was expected to reach an accuracy of a few microarcseconds, was canceled by NASA in December of 2010.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.