We use high-speed photography (1200 frames/s) to investigate the vibrational motion of a plucked guitar string over several cycles. We investigate the vibrational pattern for plucking the string at two different locations along the string's length, and with different initial amplitudes. The vibrational patterns are then compared to a standing wave model of the string vibrations. We find excellent agreement between the observed vibrational patterns and the model for small-initial-amplitude displacement of the string. For larger amplitude displacements, the qualitative behavior of the string's vibrational pattern differs significantly from the small-amplitude displacement. This behavior may be due to the presence of inharmonicity, as suggested by its incorporation into the model calculations.

1.
For example, The Samsung TL350 or the Casio EXILIM EX-FH20.
2.
J. A.
Elliot
, “
Intrinsic nonlinear effects in vibrating strings
,”
Am. J. Phys.
48
,
478
480
(
1980
).
3.
J. W.
Jewett
, Jr.
and
J. V.
Spadaro
, “
Vibrating string resonance spectra on the oscilloscope
,”
Am. J. Phys.
50
,
570
571
(
1982
).
4.
H. L.
Armstrong
, “
Forced vibration of strings
,”
Am. J. Phys.
50
,
1028
1031
(
1982
).
5.
G.
Shanker
,
V. K.
Gupta
, and
N. K.
Sharma
, “
Normal modes and dispersion relations in a beaded string: An experiment for an undergraduate laboratory
,”
Am. J. Phys.
53
,
479
481
(
1985
).
6.
J. L.
Sandoval
and
A. V.
Porta
, “
Fourier analysis for vibrating string's profile using optical detection
,”
Am. J. Phys.
53
,
1195
1203
(
1985
).
7.
J. C.
Brown
, “
Time dependent behavior of strings using Fourier analysis
,”
Am. J. Phys.
54
,
125
130
(
1986
).
8.
F.
Crawford
, “
Eigenvalues of a nonuniform string
,”
Am. J. Phys.
55
,
168
169
(
1987
).
9.
S.
Parmley
,
T.
Zobrist
,
T.
Clough
,
A.
Perez–Miller
,
M.
Makela
, and
R.
Yu
, “
Vibrational properties of a loaded string
,”
Am. J. Phys.
63
,
547
553
(
1995
).
10.
E.
Kashy
,
D. A.
Johnson
,
J.
McIntyre
, and
S. L.
Wolfe
, “
Transverse standing waves in a string with free ends
,”
Am. J. Phys.
65
,
310
313
(
1997
).
11.
T. C.
Molteno
and
N. B.
Tufillaro
, “
An experimental investigation into the dynamics of a string
,”
Am. J. Phys.
72
,
1157
1169
(
2004
).
12.
G. U.
Varieschi
and
C. M.
Gower
, “
Intonation and compensation of fretted string instruments
,”
Am. J. Phys.
78
,
47
55
(
2010
).
13.
G.
Rawitscher
and
J.
Liss
, “
The vibrating inhomogeneous string
,”
Am. J. Phys.
79
,
417
427
(
2011
).
14.
U.
Hassan
,
Z.
Usman
, and
M. S.
Anwar
, “
Video-based spatial portraits of a nonlinear vibrating string
,”
Am. J. Phys.
80
,
862
869
(
2012
).
15.
A. H.
Benade
,
Fundamentals of Musical Acoustics
(
Dover
,
New York
,
1990
).
16.
N. H.
Fletcher
and
T. D.
Rossing
,
The Physics of Musical Instruments
(
Springer-Verlag
,
New York
,
1998
).
17.
We used a Martin bronze-wound nickel string with a diameter of 0.052 inches.
18.
R. E.
Berg
and
D. G.
Stork
,
The Physics of Sound
(
Pearson/Prentice Hall
,
New Jersey
,
2005
).
19.
More information on ImageJ can be found online at <http://rsbweb.nih.gov/ij>.
20.
Although neither the left-moving or right-moving waves satisfy the boundary conditions f(0) = f(L) = 0 separately, the sum of the two waves does.
21.
G. R.
Fowles
and
G. L.
Cassiday
,
Analytical Mechanics
, 7th ed. (
Thomson Brooks/Cole
,
Belmont, CA
,
2005
).
22.
Maple 14.00, Waterloo Maple Inc. (1981–2010).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.