We analyze the dynamics of a driven, damped pendulum as used in mechanical clocks. We derive equations for the amplitude and phase of the oscillation, on time scales longer than the pendulum period. The equations are first order ODEs and permit fast simulations of the joint effects of circular and escapement errors, friction, and other disturbances for long times. The equations contain two averages of the driving torque over a period, so that the results are not very sensitive to the “fine structure” of the driving. We adopt a constant-torque escapement and study the stationary pendulum rate as a function of driving torque and friction. We also study the reaction of the pendulum to a sudden change in the driving torque, and to stationary noisy driving. The equations for the amplitude and phase are shown to describe the pendulum dynamics quite well on time scales of one period and longer. Our emphasis is on a clear exposition of the physics.

1.
A. L.
Rawlings
,
The Science of Clocks and Watches
(
EP Publishing Ltd
,
Wakefield, UK
,
1980
).
2.
B.
Taylor
and the BHI,
Woodward on Time—a Compilation of Philip Woodward's Horological Writings
(
Associated Agencies Ltd.
,
Oxford
,
2006
).
3.
G. L.
Baker
and
J. A.
Blackburn
,
The Pendulum—a Case Study in Physics
(
Oxford UP
,
UK
,
2005
).
4.
C.
Gauld
, “
Pendulums in the physics education literature: A bibliography
,”
Sci. Educ.
13
,
811
832
(
2004
).
5.
G. B.
Airy
, “
On the disturbances of pendulums and balances and on the theory of escapements
,”
Trans. Camb. Philos. Soc. III
, Part I,
105
128
(
1830
).
6.
M.
Kesteven
, “
On the mathematical theory of clock escapements
,”
Am. J. Phys.
46
,
125
129
(
1978
).
7.
R. A.
Nelson
and
M. G.
Olsson
, “
The pendulum—Rich physics from a simple system
,”
Am. J. Phys.
54
,
112
121
(
1986
).
8.
M.
Denny
, “
The pendulum clock: A venerable dynamical system
,”
Eur. J. Phys.
23
,
449
458
(
2002
).
9.
A. A.
Andronov
,
A. A.
Vitt
, and
S. E.
Khaikin
,
Theory of Oscillators
(
Pergamon Press
,
Oxford
,
1966
), pp.
146
208
.
10.
D.
Moline
,
J.
Wagner
, and
E.
Volk
, “
Model of a mechanical clock escapement
,”
Am. J. Phys.
80
,
599
606
(
2012
).
11.
F. C.
Moon
and
P. D.
Stiefel
, “
Coexisting chaotic and periodic dynamics in clock escapements
,”
Philos. Trans. R. Soc. A
364
,
2539
2564
(
2006
).
12.
R. J.
Matthys
,
Accurate Clock Pendulums
(
Oxford UP
,
2007
).
13.
See, e.g.,
A.
Milani
, “
Secular perturbations of planetary orbits and their representation as series
,” in
Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems
, edited by
A. E.
Roy
(
Kluwer, Dordrecht
,
1988
), pp.
73
108
.
14.
N. N.
Bogoliubov
and
Y. A.
Mitropolski
,
Asymptotic Methods in the Theory of Non-Linear Oscillations
(
Hindustan Publ. Corp.
,
1961
);
N. G.
van Kampen
, “
Elimination of fast variables
,”
Phys. Rep.
124
,
69
160
(
1985
), Sec. 11.
15.
F.
Bouziani
,
I. D.
Landau
, and
A.
Voda-Besançon
,
First and Second-Order K-B Approximations for the Analysis of Nonlinear Oscillations in Autonomous Systems
(Technical Report,
Laboratoire d'Automatique de Grenoble at ENSIEG, INPG
,
2004
).
16.
See Ref. 2, pp. 59–124.
17.
See Ref. 2, p. 71.
18.
See Ref. 2, pp. 108–114.
19.
L. D.
Landau
and
E. M.
Lifshitz
,
Mechanics
(Course of Theoretical Physics) (
Pergamon Press
,
Oxford
,
1978
), Vol.
I
.
20.
M.
Abramowitz
and
I.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1968
).
21.
P. M.
Woodward
, “
Escapement errors
,”
Horological J.
, May
1976
, pp.
3
8
; June 1976, pp. 3–4.
22.
IDL User's Guide and IDL Reference Guide (Research Systems, Inc., Boulder,
1993
).
23.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes
(
Cambridge U.P.
,
Cambridge
,
1987
), pp.
550
554
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.