Neutrinos are produced in weak interactions as states with definite flavor—electron, muon, or tau—and these flavor states are superpositions of states of different mass. As a neutrino propagates through space, the different mass eigenstates interfere, resulting in time-dependent flavor oscillation. Though matter is transparent to neutrinos, the flavor oscillation probability is modified when neutrinos travel through matter. Herein, we present an introduction to neutrino propagation through matter in a manner accessible to advanced undergraduate students. As an interesting application, we consider neutrino propagation through matter with a piecewise-constant density profile. This scenario has relevance in neutrino tomography, in which the density profile of matter, like the Earth's interior, can be probed via a broad-spectrum neutrino beam. We provide an idealized example to demonstrate the principle of neutrino tomography.

1.
J. N.
Bahcall
,
M. H.
Pinsonneault
, and
S.
Basu
, “
Solar models: Current epoch and time dependences, neutrinos, and helioseismological properties
,”
Astrophys. J.
555
,
990
1012
(
2001
).
2.
B. T.
Cleveland
,
T.
Daily
,
R.
Davis
, Jr.
,
J. R.
Distel
,
K.
Lande
,
C. K.
Lee
,
P. S.
Wildenhain
, and
J.
Ullman
, “
Measurement of the solar electron neutrino flux with the Homestake chlorine detector
,”
Astrophys. J.
496
,
505
526
(
1998
).
3.
J. N.
Abdurashitov
 et al. (SAGE Collaboration), “
Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22 year solar cycle
,”
J. Exp. Theor. Phys.
95
,
181
193
(
2002
).
4.
W.
Hampel
 et al. (GALLEX Collaboration), “
GALLEX solar neutrino observations: Results for GALLEX IV
,”
Phys. Lett. B
447
,
127
133
(
1999
).
5.
Y.
Fukuda
 et al. (Kamiokande Collaboration), “
Solar neutrino data covering solar cycle 22
,”
Phys. Rev. Lett.
77
,
1683
1686
(
1996
).
6.
B.
Aharmim
 et al. (SNO Collaboration), “
An Independent Measurement of the Total Active B-8 Solar Neutrino Flux Using an Array of He-3 Proportional Counters at the Sudbury Neutrino Observatory
,”
Phys. Rev. Lett.
101
,
111301
(
2008
).
7.
Y.
Ashie
 et al. (Super-Kamiokande Collaboration), “
Evidence for an oscillatory signature in atmospheric neutrino oscillation
,”
Phys. Rev. Lett.
93
,
101801
(
2004
).
8.
S.
Abe
 et al. (KamLAND Collaboration), “
Precision Measurement of Neutrino Oscillation Parameters with KamLAND
,”
Phys. Rev. Lett.
100
,
221803
(
2008
).
9.
F. P.
An
 et al. (DAYA-BAY Collaboration), “
Observation of electron-antineutrino disappearance at Daya Bay
,”
Phys. Rev. Lett.
108
,
171803
(
2012
).
10.
P.
Adamson
 et al. (MINOS Collaboration), “
Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam
,”
Phys. Rev. Lett.
101
,
131802
(
2008
).
11.
E.
Aliu
 et al. (K2K Collaboration), “
Evidence for muon neutrino oscillation in an accelerator-based experiment
,”
Phys. Rev. Lett.
94
,
081802
(
2005
).
12.
M. C.
Gonzalez-Garcia
,
M.
Maltoni
, and
J.
Salvado
, “
Updated global fit to three neutrino mixing: Status of the hints of θ13>0
,”
JHEP
1004
,
056
(
2010
).
13.
W. C.
Haxton
and
B. R.
Holstein
, “
Neutrino physics
,”
Am. J. Phys.
68
,
15
32
(
2000
).
14.
C.
Waltham
, “
Neutrino oscillations for dummies
,”
Am. J. Phys.
72
,
742
752
(
2004
).
15.
W. C.
Haxton
and
B. R.
Holstein
, “
Neutrino physics: An Update
,”
Am. J. Phys.
72
,
18
24
(
2004
).
16.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
, 2nd ed. (
Pearson Prentice-Hall
,
Upper Saddle River, NJ
,
2005
).
17.
E.
Fermi
,
Nuclear Physics
, revised ed. (
University of Chicago Press
,
Chicago
,
1950
), pp.
201
202
.
18.
A. M.
Dziewonski
and
D. L.
Anderson
, “
Preliminary reference earth model
,”
Phys. Earth Planet. Interiors
25
,
297
356
(
1981
).
19.
W.
Winter
, “
Neutrino tomography: Learning about the earth's interior using the propagation of neutrinos
,”
Earth Moon Planets
99
,
285
307
(
2006
).
20.
E. K.
Akhmedov
,
M. A.
Tortola
, and
J. W. F.
Valle
, “
Geotomography with solar and supernova neutrinos
,”
JHEP
0506
,
053
(
2005
).
21.
B.
Pontecorvo
, “
Neutrino experiments and the problem of conservation of leptonic charge
,”
Sov. Phys. JETP
26
,
984
988
(
1968
).
22.
Z.
Maki
,
M.
Nakagawa
, and
S.
Sakata
, “
Remarks on the unified model of elementary particles
,”
Prog. Theor. Phys.
28
,
870
880
(
1962
).
23.
G. L.
Fogli
,
E.
Lisi
,
A.
Marrone
,
D.
Montanino
,
A.
Palazzo
, and
A. M.
Rotunno
, “
Global analysis of neutrino masses, mixings and phases: Entering the era of leptonic CP violation searches
,”
Phys. Rev. D
86
,
013012
(
2012
).
24.
A.
Goobar
,
S.
Hannestad
,
E.
Mortsell
, and
H.
Tu
, “
A new bound on the neutrino mass from the SDSS baryon acoustic peak
,”
JCAP
0606
,
019
(
2006
).
25.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics
(
Addison-Wesley
,
Boston
,
1963
), Vol. 1, pp.
31
1
31
11
.
26.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1999
), pp.
500
505
.
27.
J.
Liu
, “
Neutrino coherent forward scattering and its index of refraction
,”
Phys. Rev. D
45
,
1428
1431
(
1992
).
28.
S. P.
Mikheev
and
A. Y.
Smirnov
, “
Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos
,”
Sov. J. Nucl. Phys.
42
,
913
917
(
1985
).
29.
L.
Wolfenstein
, “
Neutrino oscillations in matter
,”
Phys. Rev. D
17
,
2369
2374
(
1978
).
30.
D. J.
Griffiths
,
Introduction to Elementary Particles
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2008
), pp.
307
337
.
31.
E. K.
Akhmedov
, “
Neutrino oscillations in inhomogeneous matter
(in Russian), Sov. J. Nucl. Phys.
47
,
301
302
(
1988
).
32.
V. K.
Ermilova
,
V. A.
Tsarev
, and
V. A.
Chechin
, “
Buildup of neutrino oscillations in the earth
,”
JETP Lett.
43
,
453
456
(
1986
).
33.
T.
Ohlsson
and
W.
Winter
, “
Could one find petroleum using neutrino oscillations in matter?
,”
Europhys. Lett.
60
,
34
39
(
2002
).
34.
A. N.
Ioannisian
and
A. Y.
Smirnov
, “
Neutrino oscillations in low density medium
,”
Phys. Rev. Lett.
93
,
241801
(
2004
).
35.
T. A.
Mueller
 et al., “
Improved predictions of reactor antineutrino spectra
,”
Phys. Rev. C
83
,
054615
(
2011
).
36.
Grace is a two-dimensional plotting tool available at <http://plasma-gate.weizmann.ac.il/Grace/>.
37.
For a purely two-neutrino system, the mixing matrix can always be taken as real since complex phases can be absorbed into the definitions of the fields. For a three-neutrino system, this is not the case. Three complex phases survive, though only one of these, the Dirac CP phase, is observable in neutrino oscillations.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.