Through the contributions of Galileo, Newton, and Einstein, we recall the universality of free fall (UFF), the weak equivalence principle (WEP), and the strong equivalence principle (SEP), in order to stress that general relativity requires all test masses to be equally accelerated in a gravitational field; that is, it requires UFF and WEP to hold. The possibility of testing this crucial fact with null, highly sensitive experiments makes these the most powerful tests of the theory. Following Schiff, we derive the gravitational redshift from the WEP and special relativity and show that, as long as clocks are affected by a gravitating body like normal matter, measurement of the redshift is a test of UFF/WEP but cannot compete with direct null tests. A new measurement of the gravitational redshift based on free-falling cold atoms and an absolute gravimeter is not competitive either. Finally, we compare UFF/WEP experiments using macroscopic masses as test bodies in one case and cold atoms in the other. We conclude that there is no difference in the nature of the test and that the merit of any such experiment rests on the accuracy it can achieve and on the physical differences between the elements it can test, macroscopic proof masses being superior in both respects.

1.
R. V.
Eötvös
,
D.
Pekár
, and
E.
Fekete
, “
Beiträge zum Gesetze der Proportionalität von Trägheit und Gravität
,”
Ann. Phys.
373
,
11
66
(
1922
).
2.
The White House, “
Introduction to outer space. An explanatory statement prepared by the President's Science Advisory Committee
,” available online at <http://www.fas.org/spp/guide/usa/intro1958.html>,
1
15
(
1958
).
3.
L. I.
Schiff
, “
On experimental tests of the general theory of relativity
,”
Am. J. Phys.
28
,
340
343
(
1960
).
4.
ESA, “
STE-QUEST: Space-time explorer and quantum equivalence principle space test
,” available online at <http://sci.esa.int/science-e/www/object/doc.cfm?fobjectid=49307>,
1
39
(
2011
).
5.
H.
Müller
,
A.
Peters
, and
S.
Chu
, “
A precision measurement of the gravitational redshift by the interference of matter waves
,”
Nature
463
,
926
929
(
2010
).
6.
K.
Nordtvedt
, “
Quantitative relationship between clock gravitational ‘red-shift’ violations and nonuniversality of free-fall rates in nonmetric theories of gravity
,”
Phys. Rev. D
11
,
245
247
(
1975
).
7.
A.
Peters
,
K. Y.
Chung
, and
S.
Chu
, “
Measurement of gravitational acceleration by dropping atoms
,”
Nature
400
,
849
852
(
1999
).
8.
K. S.
Thorne
,
D. L.
Lee
, and
A. P.
Lightman
, “
Foundations for a theory of gravitational theories
,”
Phys. Rev. D
7
,
3563
3578
(
1973
).
9.
N.
Ashby
,
T. P.
Heavner
,
S. R.
Jefferts
,
T. E.
Parker
,
A. G.
Radnaev
, and
Y. O.
Dudin
, “
Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers
,”
Phys. Rev. Lett.
98
,
070802
1
(
2007
).
10.
G.
Galilei
,
Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti alla mecanica & i movimenti locali, in Edizione Nazionale delle Opere di Galilei
, Vol.
VIII
, p.
128
,
Barbera Ristampa del 1968
,
Firenze
;
G.
Galilei
,
Dialogues Concerning Two New Sciences
(
Dover
,
New York
,
1954
).
11.
D.
Bramanti
,
G.
Catastini
,
A. M.
Nobili
,
E.
Polacco
,
E.
Rossi
, and
R.
Vergara Caffarelli
, “
Galileo and the universality of free fall
,” in
Proceedings of the STEP Symposium
, Pisa, Italy 6-8 April 1993, ESA WPP-115, p.
319
.
12.
F.
Fuligni
and
V.
Iafolla
, “
Galileo and the principle of equivalence
,” in
Proceedings of the STEP Symposium
, Pisa Italy 6–8 April 1993, ESA WPP-115, pp.
104
109
.
13.
F.
Cajori
,
Sir Isaac Newton's Mathematical Principles of Natural Philosophy
(
University of California
,
Berkeley
,
1934
).
14.
P. G.
Roll
,
R.
Krotkov
, and
R. H.
Dicke
, “
The equivalence of passive and gravitational mass
,”
Ann. Phys.
26
,
442
517
(
1964
).
15.
J. G.
Williams
,
S. G.
Turyshev
, and
D. H.
Boggs
, “
Progress in lunar laser ranging tests of relativistic gravity
,”
Phys. Rev. Lett.
93
,
261101
1
(
2004
).
16.
V. B.
Braginsky
and
V. I.
Panov
, “
Verification of the equivalence of inertial and gravitational mass
,”
Sov. Phys. JEPT
34
,
463
466
(
1972
).
17.
S.
Baeßler
,
B. R.
Heckel
,
E. G.
Adelberger
,
J. H.
Gundlach
,
U.
Schimidt
, and
H. E.
Swanson
, “
Improved test of the equivalence principle for gravitational self-energy
,”
Phys. Rev. Lett.
83
,
3585
3588
(
1999
).
18.
S.
Schlamminger
,
K.-Y.
Choi
,
T. A.
Wagner
,
J. H.
Gundlach
, and
E. G.
Adelberger
, “
Test of the equivalence principle using a rotating torsion balance
,”
Phys. Rev. Lett.
100
,
041101
1
(
2008
).
19.
T. D.
Wagner
Torsion-balance tests of the weak equivalence principle
,”
Class. Quantum Grav.
29
,
184002
1
(
2012
).
20.
A.
Einstein
, “
Zur Elektrodynamik bewegter Körper
,”
Ann. Phys.
322
(
10
),
891
921
(
1905
);
A.
Einstein
, “
On the electrodynamics of moving bodies
,” in
The Principle of Relativity. Original Papers
edited by
A.
Einstein
and
H.
Minkowsky
(
University of Calcutta
,
1920
), pp.
1
34
, available online at <http://www.archive.org/stream/principleofrelat00eins#page/n7/mode/2up>.
21.
A.
Einstein
, “
Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen
,”
Jahrbuch für Radioaktivität und Elektronik
,
4
,
411
462
(
1907
);
“ On the relativity principle and conclusions drawn from it,” in
H. M.
Schwarz
, “
Einstein's comprehensive 1907 essay on relativity, part III
,”
Am. J. Phys.
45
(
10
)
899
902
(
1977
).
22.
G.
Holton
,
Thematic Origins of Scientific Thought
(
Harvard U.P., Cambridge, MA
,
1973
).
23.
A.
Einstein
, “
How I created the theory of relativity
,” translated by Y. A. Ono,
Phys. Today
35
(
8
),
45
47
(
1982
).
24.
C. M.
Will
, “
The confrontation between general relativity and experiment
,”
Living Rev. Relativity
9
,
1
100
(
2006
), available online at <http://www.livingreviews.org/lrr-2006-3>.
25.
R. H.
Dicke
,
The Theoretical Significance of Experimental Relativity
(
Blackie and Son
,
London and Glasgow
,
1964
).
26.
A.
Einstein
, “
Die Feldgleichungen der Gravitation
,” Preussische Akademie der Wissenschaften, Sitzungsberichte (part 2),
844
847
(
1915
); “The field equations of gravitation,” translated by Wikisource <http://en.wikisource.org/wiki/The_Field_Equations_of_Gravitation>.
27.
A.
Einstein
, “
Grundlage der allgemeinen Relativitätstheorie
,”
Ann. Phys. (ser. 4)
49
,
769
822
(
1916
);
A.
Einstein
, “
The foundation of the general theory of relativity
,” in
The Principle of Relativity
(
Dover
,
New York
,
1952
).
28.
A.
Einstein
, “
Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes
,”
Ann. Phys.
35
(
10
),
898
908
(
1911
);
A.
Einstein
, “
On the influence of gravitation on the propagation of light
,” in
The Principle of Relativity
(
Dover
,
New York
,
1952
).
29.
R. C.
Tolman
,
Relativity, Thermodynamics and Cosmology
(
The Clarendon Press
,
Oxford
,
1934
).
30.
A.
Einstein
, “
Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?
,”
Ann. Phys.
18
(
13
),
639
641
(
1905
); “Does the inertia of a body depend upon its energy content?” <http://www.fourmilab.ch/etexts/einstein/E_mc2/www/>.
31.
R. F. C.
Vessot
,
M. W.
Levine
,
E. M.
Mattison
,
E. L.
Blomberg
,
T. E.
Hoffman
,
G. U.
Nystrom
, and
B. F.
Farrel
, “
Test of relativistic gravitation with a space-borne hydrogen maser
,”
Phys. Rev. Lett.
45
,
2081
2084
(
1980
).
32.
R.
Pegna
, private communication I (
2012
).
33.
A. M.
Nobili
,
G. L.
Comandi
,
D.
Bramanti
,
Suresh
Doravari
,
D. M.
Lucchesi
, and
F.
Maccarrone
, “
Limitations to testing the equivalence principle with satellite laser ranging
,”
Gen. Relativ. Gravit.
40
,
1533
1554
(
2008
);
A. M.
Nobili
,
G. L.
Comandi
,
D.
Bramanti
,
Suresh
Doravari
,
D. M.
Lucchesi
, and
F.
Maccarrone
,
Gen. Relativ. Gravit.
40
,
1555
(
2008
).
34.
L.
Blanchet
,
C.
Salomon
,
P.
Teyssandier
, and
P.
Wolf
, “
Relativistic theory for time and frequency transfer to order c−3
,”
Astron. Astrophys.
370
,
320
329
(
2001
).
35.
T. P.
Krisher
, “
Parametrized post-Newtonian gravitational redshift
,”
Phys. Rev. D
48
,
4639
(
1993
).
36.
A.
Schild
, “
Equivalence principle and red-shift measurements
,”
Am. J. Phys.
28
,
778
780
(
1960
).
37.
W.
Rindler
, “
Counterexample to the Lenz-Schiff argument
,”
Am. J. Phys.
36
,
540
544
(
1968
).
38.
R. H.
Dicke
, “
Eotvos experiment and the gravitational red shift
,”
Am. J. Phys.
28
,
344
347
(
1960
).
39.
V. W.
Hughes
,
H. G.
Robinson
, and
V.
Beltran-Lopez
, “
Upper limit for the anisotropy of inertial mass from nuclear resonance experiments
,”
Phys. Rev. Lett.
4
,
342
344
(
1960
).
40.
R. W. P.
Drever
, “
A search for anisotropy of inertial mass using a free precession technique
,”
Philos. Mag.
6
,
683
687
(
1961
).
41.
P.
Wolf
,
L.
Blanchet
,
C. J.
Bordé
,
S.
Reynaud
,
C.
Salomon
, and
C.
Cohen-Tannoudji
, “
Atom gravimeters and gravitational redshift
,”
Nature
467
,
E1
(
2010
).
42.
M. A.
Hohensee
,
S.
Chu
,
A.
Peters
, and
H.
Müller
, “
Equivalence principle and gravitational redshift
,”
Phys. Rev. Lett.
106
,
151102
1
(
2011
).
43.
P.
Wolf
,
L.
Blanchet
,
C. J.
Bordé
,
S.
Reynaud
,
C.
Salomon
, and
C.
Cohen-Tannoudji
, “
Does an atom interferometer test the gravitational redshift at the Compton frequency?
,”
Class. Quantum Grav.
28
,
145017
1
145017
23
(
2011
).
44.
M. A.
Hohensee
,
S.
Chu
,
A.
Peters
, and
H.
Müller
, “
Comment on: ‘Does an atom interferometer test the gravitational redshift at the Compton frequency?
,’”
Class. Quantum Grav.
29
,
048001
1
(
2012
).
45.
P.
Wolf
,
L.
Blanchet
,
C. J.
Bordé
,
S.
Reynaud
,
C.
Salomon
, and
C.
Cohen-Tannoudji
, “
Reply to comment on: ‘Does an atom interferometer test the gravitational redshift at the Compton frequency?,’
Class. Quantum Grav.
29
,
048002
1
(
2012
).
46.
C. S.
Unnikrishnan
and
G. T.
Gillies
, “
Reexamining the roles of gravitational and inertial masses in gravimetry with atom interferometers
,”
Phys. Lett. A
377
,
60
63
(
2012
).
47.
A. M.
Nobili
,
M.
Shao
,
R.
Pegna
,
G.
Zavattini
,
S. G.
Turyshev
,
D. M.
Lucchesi
,
A.
De Michele
,
S.
Doravari
,
G. L.
Comandi
,
T. R.
Saravanan
,
F.
Palmonari
,
G.
Catastini
, and
A.
Anselmi
, “
‘Galileo Galilei’ (GG): space test of the weak equivalence principle to 10−17 and laboratory demonstrations
,”
Class. Quantum Grav.
29
,
184011
1
(
2012
).
48.
R.
Pegna
, private communication II (
2012
).
49.
S.
Fray
,
C. A.
Diez
,
T. W.
Hänsch
, and
M.
Weitz
, “
Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle
,”
Phys. Rev. Lett.
93
,
240404
1
(
2004
).
50.
P.
Storey
and
C.
Cohen–Tannoudji
, “
The Feynman path integral approach to atomic interferometry. A tutorial
,”
J. Phys. II France
4
,
1999
2027
(
1994
).
51.
C. S.
Unnikrishnan
, “
The Equivalence Principle and Quantum Mechanics: A theme in harmony
,”
Mod. Phys. Lett. A
17
,
1081
1090
(
2002
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.