Quantum spin chains are prototype quantum many-body systems that are employed in the description of various complex physical phenomena. We provide an introduction to this subject by focusing on the time evolution of a Heisenberg spin-1/2 chain and interpreting the results based on the analysis of the eigenvalues, eigenstates, and symmetries of the system. We make available online all computer codes used to obtain our data.
REFERENCES
1.
S. A.
Goudsmit
, “The discovery of the electron spin,” available online at <http://www.lorentz.leidenuniv.nl/history/spin/goudsmit.html>.2.
H. C.
Ohanian
, “What is spin
,” Am. J. Phys.
54
, 500
–505
(1986
).3.
D. C.
Mattis
, The Theory of Magnetism Made Simple: An Introduction to Physical Concepts and to Some Useful Mathematical Methods
(World Scientific
, Singapore
, 2006
).4.
W.
Nolting
and A.
Ramakanth
, Quantum Theory of Magnetism
(Springer
, Berlin/Heidelberg
, 2009
).5.
J. B.
Parkinson
and D. J. J.
Farnell
, Introduction to Quantum Spin Systems
(Springer
, Heidelberg
, 2010
).6.
H. A.
Bethe
, “On the theory of metal I. Eigenvalues and eigenfunctions of a linear chain of atoms
,” Z. Phys.
71
, 205
–226
(1931
).7.
M.
Karbach
and G.
Müller
, “Introduction to the Bethe ansatz I
,” Comput. Phys.
11
, 36
–44
(1997
); e-print arXiv:cond-mat/9809162.8.
9.
F. D. M.
Haldane
, “Continuum dynamics of the 1-d heisenberg antiferromagnet: Identification with the o(3) nonlinear sigma model
,” Phys. Lett. A
93
, 464
–468
(1983
).10.
F. D. M.
Haldane
, “Nonlinear field theory of large-spin heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis néel state
,” Phys. Rev. Lett.
50
, 1153
–1156
(1983
).11.
I.
Affleck
, “Quantum spin chains and the haldane gap
,” J. Phys.: Condens. Matter
1
, 3047
–3072
(1989
).12.
I.
Affleck
, T.
Kennedy
, E. H.
Lieb
, and H.
Tasaki
, “Rigorous results on valence-bond ground states in antiferromagnets
,” Phys. Rev. Lett.
59
, 799
–802
(1987
).13.
A. V.
Sologubenko
, E.
Felder
, K.
Giannò
, H. R.
Ott
, A.
Vietkine
, and A.
Revcolevschi
, “Thermal conductivity and specific heat of the linear chain cuprate Sr2CuO3: Evidence for thermal transport via spinons
,” Phys. Rev. B
62
, R6108
–6111
(2000
).14.
C.
Hess
, “Heat conduction in low-dimensional quantum magnets
,” Eur. Phys. J. Spec. Top.
151
, 73
–83
(2007
).15.
N.
Hlubek
, P.
Ribeiro
, R.
Saint-Martin
, A.
Revcolevschi
, G.
Roth
, G.
Behr
, B.
Büchner
, and C.
Hess
, “Ballistic heat transport of quantum spin excitations as seen in SrCuO2
,” Phys. Rev. B
81
, 020405
–R
1
–4
(2010
).16.
X.
Zotos
, F.
Naef
, and P.
Prelovšek
, “Transport and conservation laws
,” Phys. Rev. B
55
, 11029
–11032
(1997
).17.
S.
Chen
, L.
Wang
, S.-J.
Gu
, and Y.
Wang
, “Fidelity and quantum phase transition for the Heisenberg chain with next-nearest-neighbor interaction
,” Phys. Rev. E
76
, 061108
–1
(2007
).18.
F.
Dukesz
, M.
Zilbergerts
, and L. F.
Santos
, “Interplay between interaction and (un)correlated disorder in one-dimensional many-particle systems: Delocalization and global entanglement
,” New J. Phys.
11
, 043026
–1
(2009
).19.
L. F.
Santos
, “Transport and control in one-dimensional systems
,” J. Math. Phys
50
, 095211
–1
(2009
).20.
L. F.
Santos
and A.
Mitra
, “Domain wall dynamics in integrable and chaotic spin-1/2 chains
,” Phys. Rev. E
84
, 016206
–1
(2011
).21.
L. F.
Santos
, F.
Borgonovi
, and F. M.
Izrailev
, “Chaos and statistical relaxation in quantum systems of interacting particles
,” Phys. Rev. Lett.
108
, 094102
–1
(2012
).22.
M.
Rigol
, “Dynamics and thermalization in correlated one-dimensional lattice systems
,” in Non-Equilibrium and Finite Temperature quantum Gases
, edited by S.
Gardiner
, N.
Proukakis
, M.
Davis
, Cold Atom Series, World Scientific (Imperial College Press)
; also available as e-print arXiv:1008.1930.23.
M. A.
Nielsen
and I. L.
Chuang
, Quantum Computation and Quantum Information
(Cambridge U.P.
, Cambridge
, 2000
).24.
L.
Amico
, R.
Fazio
, A.
Osterloh
, and V.
Vedral
, “Entanglement in many-body systems
,” Rev. Mod. Phys.
80
, 517
–576
(2008
).25.
S.
Bose
, “Quantum communication through spin chain dynamics: An introductory overview
,” Contemp. Phys.
48
, 13
–30
(2007
).26.
P.
Cappellaro
, C.
Ramanathan
, and D. G.
Cory
, “Simulations of information transport in spin chains
,” Phys. Rev. Lett.
99
, 250506
–1
(2007
).27.
T. C.
Hsu
and J. C. A.
d'Auriac
, “Level repulsion in integrable and almost-integrable quantum spin models
,” Phys. Rev. B
47
, 14291
–14296
(1993
).28.
Y.
Avishai
, J.
Richert
, and R.
Berkovitz
, “Level statistics in a Heisenberg chain with random magnetic field
,” Phys. Rev. B
66
, 052416
–1
(2002
).29.
L. F.
Santos
, “Integrability of a disordered Heisenberg spin-1/2 chain
,” J. Phys. A
37
, 4723
–4729
(2004
).30.
A.
Gubin
and L. F.
Santos
, “Quantum chaos: An introduction via chains of interacting spins 1/2
,” Am. J. Phys.
80
, 246
–251
(2012
).31.
J.
Simon
, W. S.
Bakr
, R.
Ma
, M. E.
Tai
, P. M.
Preiss
, and M.
Greiner
, “Quantum simulation of antiferromagnetic spin chains in an optical lattice
,” Nature (London)
472
, 307
–312
(2011
).32.
M.
Greiner
and S.
Fölling
, “Optical lattices
,” Nature
453
, 736
–738
(2008
).33.
M. A.
Cazalilla
, R.
Citro
, T.
Giamarchi
, E.
Orignac
, and M.
Rigol
, “One dimensional bosons: From condensed matter systems to ultracold gases
,” Rev. Mod. Phys.
83
, 1405
–1466
(2011
).34.
J.
Hubbard
, “Electron correlations in narrow energy bands
,” J. Proc. Roy. Soc. London
276
, 238
–257
(1963
).35.
J.
Quintanilla
and C.
Hooley
, “The strong-correlations puzzle
,” Phys. World
22
(6
), 32
–37
(2009
).36.
F. H. L.
Essler
, H.
Frahm
, F.
Göhmann
, A.
Klümper
, and V. E.
Korepin
, The One-Dimensional Hubbard Model
(Cambridge U.P.
, Cambridge
, 2005
).37.
B. A.
Cipra
, “An introduction to the Ising Model
,” Am. Math. Monthly
94
(10
), 937
–959
(1987
).38.
See supplementary material at http://dx.doi.org/10.1119/1.4798343 for the computer code. These materials are also available at http://yu.edu/faculty-bios/santos/computer-codes/.
39.
L. F.
Santos
and M.
Rigol
, “Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization
,” Phys. Rev. E
81
036206
–1
(2010
).40.
We note that a closer study of each band reveals a curious substructure caused by border effects, as observed in Ref. 46.
41.
F. M.
Izrailev
, “Simple models of quantum chaos: Spectrum and eigenfunctions
,” Phys. Rep.
196
, 299
–392
(1990
).42.
V.
Zelevinsky
, B. A.
Brown
, N.
Frazier
, and M.
Horoi
, “The nuclear shell model as a testing ground for many-body quantum chaos
,” Phys. Rep.
276
, 85
–176
(1996
).43.
R.
Shankarl
, Principles of Quantum Mechanics
(Kluwer Academic
, New York
, 1994
).44.
45.
L. F.
Santos
and G.
Rigolin
, “Effects of the interplay between interaction and disorder in bipartite entanglement
,” Phys. Rev. A
71
, 032321
–1
(2005
).46.
M.
Haque
, “Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains
,” Phys. Rev. A
82
, 012108
–1
(2010
).47.
D. J.
Griffiths
, Introduction to Quantum Mechanics
(Prentice-Hall
, Upper Saddle River, NJ
, 2004
).48.
E. M.
Henely
and A.
Garcia
, Subatomic Physics
(World Scientific
, Singapore
, 2007
).49.
E.
Noether
in Collected Papers
, edited by N.
Jacobson
(Springer-Verlag
, New York
, 1983
).© 2013 American Association of Physics Teachers.
2013
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.