Quantum spin chains are prototype quantum many-body systems that are employed in the description of various complex physical phenomena. We provide an introduction to this subject by focusing on the time evolution of a Heisenberg spin-1/2 chain and interpreting the results based on the analysis of the eigenvalues, eigenstates, and symmetries of the system. We make available online all computer codes used to obtain our data.

1.
S. A.
Goudsmit
, “The discovery of the electron spin,” available online at <http://www.lorentz.leidenuniv.nl/history/spin/goudsmit.html>.
2.
H. C.
Ohanian
, “
What is spin
,”
Am. J. Phys.
54
,
500
505
(
1986
).
3.
D. C.
Mattis
,
The Theory of Magnetism Made Simple: An Introduction to Physical Concepts and to Some Useful Mathematical Methods
(
World Scientific
,
Singapore
,
2006
).
4.
W.
Nolting
and
A.
Ramakanth
,
Quantum Theory of Magnetism
(
Springer
,
Berlin/Heidelberg
,
2009
).
5.
J. B.
Parkinson
and
D. J. J.
Farnell
,
Introduction to Quantum Spin Systems
(
Springer
,
Heidelberg
,
2010
).
6.
H. A.
Bethe
, “
On the theory of metal I. Eigenvalues and eigenfunctions of a linear chain of atoms
,”
Z. Phys.
71
,
205
226
(
1931
).
7.
M.
Karbach
and
G.
Müller
, “
Introduction to the Bethe ansatz I
,”
Comput. Phys.
11
,
36
44
(
1997
); e-print arXiv:cond-mat/9809162.
8.
B.
Sutherland
,
Beautiful Models
(
World Scientific
,
New Jersey
,
2005
).
9.
F. D. M.
Haldane
, “
Continuum dynamics of the 1-d heisenberg antiferromagnet: Identification with the o(3) nonlinear sigma model
,”
Phys. Lett. A
93
,
464
468
(
1983
).
10.
F. D. M.
Haldane
, “
Nonlinear field theory of large-spin heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis néel state
,”
Phys. Rev. Lett.
50
,
1153
1156
(
1983
).
11.
I.
Affleck
, “
Quantum spin chains and the haldane gap
,”
J. Phys.: Condens. Matter
1
,
3047
3072
(
1989
).
12.
I.
Affleck
,
T.
Kennedy
,
E. H.
Lieb
, and
H.
Tasaki
, “
Rigorous results on valence-bond ground states in antiferromagnets
,”
Phys. Rev. Lett.
59
,
799
802
(
1987
).
13.
A. V.
Sologubenko
,
E.
Felder
,
K.
Giannò
,
H. R.
Ott
,
A.
Vietkine
, and
A.
Revcolevschi
, “
Thermal conductivity and specific heat of the linear chain cuprate Sr2CuO3: Evidence for thermal transport via spinons
,”
Phys. Rev. B
62
,
R6108
6111
(
2000
).
14.
C.
Hess
, “
Heat conduction in low-dimensional quantum magnets
,”
Eur. Phys. J. Spec. Top.
151
,
73
83
(
2007
).
15.
N.
Hlubek
,
P.
Ribeiro
,
R.
Saint-Martin
,
A.
Revcolevschi
,
G.
Roth
,
G.
Behr
,
B.
Büchner
, and
C.
Hess
, “
Ballistic heat transport of quantum spin excitations as seen in SrCuO2
,”
Phys. Rev. B
81
,
020405
R
1
4
(
2010
).
16.
X.
Zotos
,
F.
Naef
, and
P.
Prelovšek
, “
Transport and conservation laws
,”
Phys. Rev. B
55
,
11029
11032
(
1997
).
17.
S.
Chen
,
L.
Wang
,
S.-J.
Gu
, and
Y.
Wang
, “
Fidelity and quantum phase transition for the Heisenberg chain with next-nearest-neighbor interaction
,”
Phys. Rev. E
76
,
061108
1
(
2007
).
18.
F.
Dukesz
,
M.
Zilbergerts
, and
L. F.
Santos
, “
Interplay between interaction and (un)correlated disorder in one-dimensional many-particle systems: Delocalization and global entanglement
,”
New J. Phys.
11
,
043026
1
(
2009
).
19.
L. F.
Santos
, “
Transport and control in one-dimensional systems
,”
J. Math. Phys
50
,
095211
1
(
2009
).
20.
L. F.
Santos
and
A.
Mitra
, “
Domain wall dynamics in integrable and chaotic spin-1/2 chains
,”
Phys. Rev. E
84
,
016206
1
(
2011
).
21.
L. F.
Santos
,
F.
Borgonovi
, and
F. M.
Izrailev
, “
Chaos and statistical relaxation in quantum systems of interacting particles
,”
Phys. Rev. Lett.
108
,
094102
1
(
2012
).
22.
M.
Rigol
, “
Dynamics and thermalization in correlated one-dimensional lattice systems
,” in
Non-Equilibrium and Finite Temperature quantum Gases
, edited by
S.
Gardiner
,
N.
Proukakis
,
M.
Davis
,
Cold Atom Series, World Scientific (Imperial College Press)
; also available as e-print arXiv:1008.1930.
23.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge U.P.
,
Cambridge
,
2000
).
24.
L.
Amico
,
R.
Fazio
,
A.
Osterloh
, and
V.
Vedral
, “
Entanglement in many-body systems
,”
Rev. Mod. Phys.
80
,
517
576
(
2008
).
25.
S.
Bose
, “
Quantum communication through spin chain dynamics: An introductory overview
,”
Contemp. Phys.
48
,
13
30
(
2007
).
26.
P.
Cappellaro
,
C.
Ramanathan
, and
D. G.
Cory
, “
Simulations of information transport in spin chains
,”
Phys. Rev. Lett.
99
,
250506
1
(
2007
).
27.
T. C.
Hsu
and
J. C. A.
d'Auriac
, “
Level repulsion in integrable and almost-integrable quantum spin models
,”
Phys. Rev. B
47
,
14291
14296
(
1993
).
28.
Y.
Avishai
,
J.
Richert
, and
R.
Berkovitz
, “
Level statistics in a Heisenberg chain with random magnetic field
,”
Phys. Rev. B
66
,
052416
1
(
2002
).
29.
L. F.
Santos
, “
Integrability of a disordered Heisenberg spin-1/2 chain
,”
J. Phys. A
37
,
4723
4729
(
2004
).
30.
A.
Gubin
and
L. F.
Santos
, “
Quantum chaos: An introduction via chains of interacting spins 1/2
,”
Am. J. Phys.
80
,
246
251
(
2012
).
31.
J.
Simon
,
W. S.
Bakr
,
R.
Ma
,
M. E.
Tai
,
P. M.
Preiss
, and
M.
Greiner
, “
Quantum simulation of antiferromagnetic spin chains in an optical lattice
,”
Nature (London)
472
,
307
312
(
2011
).
32.
M.
Greiner
and
S.
Fölling
, “
Optical lattices
,”
Nature
453
,
736
738
(
2008
).
33.
M. A.
Cazalilla
,
R.
Citro
,
T.
Giamarchi
,
E.
Orignac
, and
M.
Rigol
, “
One dimensional bosons: From condensed matter systems to ultracold gases
,”
Rev. Mod. Phys.
83
,
1405
1466
(
2011
).
34.
J.
Hubbard
, “
Electron correlations in narrow energy bands
,”
J. Proc. Roy. Soc. London
276
,
238
257
(
1963
).
35.
J.
Quintanilla
and
C.
Hooley
, “
The strong-correlations puzzle
,”
Phys. World
22
(
6
),
32
37
(
2009
).
36.
F. H. L.
Essler
,
H.
Frahm
,
F.
Göhmann
,
A.
Klümper
, and
V. E.
Korepin
,
The One-Dimensional Hubbard Model
(
Cambridge U.P.
,
Cambridge
,
2005
).
37.
B. A.
Cipra
, “
An introduction to the Ising Model
,”
Am. Math. Monthly
94
(
10
),
937
959
(
1987
).
38.
See supplementary material at http://dx.doi.org/10.1119/1.4798343 for the computer code. These materials are also available at http://yu.edu/faculty-bios/santos/computer-codes/.
39.
L. F.
Santos
and
M.
Rigol
, “
Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization
,”
Phys. Rev. E
81
036206
1
(
2010
).
40.
We note that a closer study of each band reveals a curious substructure caused by border effects, as observed in Ref. 46.
41.
F. M.
Izrailev
, “
Simple models of quantum chaos: Spectrum and eigenfunctions
,”
Phys. Rep.
196
,
299
392
(
1990
).
42.
V.
Zelevinsky
,
B. A.
Brown
,
N.
Frazier
, and
M.
Horoi
, “
The nuclear shell model as a testing ground for many-body quantum chaos
,”
Phys. Rep.
276
,
85
176
(
1996
).
43.
R.
Shankarl
,
Principles of Quantum Mechanics
(
Kluwer Academic
,
New York
,
1994
).
44.
E.
Merzbacher
,
Quantum Mechanics
(
John Wiley & Sons
,
New York
,
1988
).
45.
L. F.
Santos
and
G.
Rigolin
, “
Effects of the interplay between interaction and disorder in bipartite entanglement
,”
Phys. Rev. A
71
,
032321
1
(
2005
).
46.
M.
Haque
, “
Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains
,”
Phys. Rev. A
82
,
012108
1
(
2010
).
47.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
(
Prentice-Hall
,
Upper Saddle River, NJ
,
2004
).
48.
E. M.
Henely
and
A.
Garcia
,
Subatomic Physics
(
World Scientific
,
Singapore
,
2007
).
49.
E.
Noether
in
Collected Papers
, edited by
N.
Jacobson
(
Springer-Verlag
,
New York
,
1983
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.