We describe an experiment for generating and characterizing a beam of collimated blue light (CBL) in a rubidium vapor. Two low-power, grating-feedback diode lasers, operating at 780.2 nm (5S1/25P3/2) and 776.0 nm (5P3/25D5/2), respectively, provide step-wise excitation to the 5D excited state in rubidium. Under the right experimental conditions, cascade decay through the 6P excited state will yield a collimated blue (420-nm) beam of light with high temporal and spatial coherence. We investigate the production of a blue beam under a variety of experimental conditions and characterize the spatial coherence and spectral characteristics. This experiment provides advanced undergraduate students with a unique opportunity to investigate nonlinear optical phenomena in the laboratory and uses equipment that is commonly available in laboratories equipped to investigate diode-laser-based absorption spectroscopy in rubidium.

1.
J.
Mompart
and
R.
Corbalan
, “
Lasing without inversion
,”
J. Opt. B: Quantum Semiclassical Opt.
2
,
R7
R24
(
2000
).
2.
O.
Kocharovskaya
, “
Amplification and lasing without inversion
,”
Phys. Rev.
219
,
175
190
(
1992
).
3.
K. J.
Boller
,
A.
Imamoglu
, and
S. E.
Harris
, “
Observation of electromagnetically induced transparency
,”
Phys. Rev. Lett.
66
,
2593
2596
(
1991
).
4.
A. S.
Zibrov
,
M. D.
Lukin
,
D. E.
Nikonov
,
L.
Hollberg
,
M. O.
Scully
,
V. L.
Velichansky
, and
H. G.
Robinson
, “
Experimental demonstration of laser oscillation with population inversion via quantum interference in Rb
,”
Phys. Rev. Lett.
75
,
1499
1502
(
1995
).
5.
P. S.
Bhatia
,
G. R.
Welch
, and
M. O.
Scully
, “
Laser amplification without population inversion on the D1 line of the Cs atom with semiconductor diode lasers
,”
J. Opt. Soc. Am. B
18
,
1587
1596
(
2001
).
6.
H.
Wu
,
M.
Xiao
, and
J.
Gea-Banacloche
, “
Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically-induced-transparency conditions
,”
Phys. Rev. A
78
,
041802
1
(
2008
).
7.
L. V.
Hau
,
S. E.
Harris
,
Z.
Dutton
, and
C. H.
Behroozi
, “
Light speed reduction to 17 meters per second in an ultracold atomic gas
,”
Nature
397
,
594
598
(
1999
).
8.
S. E.
Harris
and
Y.
Yamamoto
, “
Photon switching by quantum interference
,”
Phys. Rev. Lett.
81
,
3611
3614
(
1998
).
9.
J.
Clarke
,
H.
Chen
, and
W. A.
van Wijngaarden
, “
Electromagnetically induced transparency and optical switching in a rubidium cascade system
,”
Appl. Opt.
40
,
2047
2051
(
2001
).
10.
H.
Schmidt
and
R. J.
Ram
, “
All-optical wavelength converter and switch based on electromagnetically induced transparency
,”
Appl. Phys. Lett.
76
,
3173
3175
(
2000
).
11.
A. S.
Zibrov
,
M. D.
Lukin
,
L.
Hollberg
, and
M. O.
Scully
, “
Efficient frequency up-conversion in resonant coherent media
,”
Phys. Rev. A
65
,
051801
1
(
2002
).
12.
T.
Meijer
,
J. D.
White
,
B.
Smeets
,
M.
Jeppesen
, and
R. E.
Scholten
, “
Blue five-level frequency-upconversion system in rubidium
,”
Opt. Lett.
31
,
1002
1004
(
2006
).
13.
A.
Vernier
,
S.
Franke-Arnold
,
E.
Riis
, and
A. S.
Arnold
Enhanced frequency up-conversion in Rb vapor
,”
Opt. Exp.
18
,
17020
17026
(
2010
).
14.
J. T.
Schultz
,
S.
Abend
,
D.
Doring
,
J. E.
Debs
,
P. A.
Altin
,
J. D.
White
,
N. P.
Robins
, and
J. D.
Close
, “
Coherent 455 nm beam production in a cesium vapor
,”
Opt. Lett.
34
,
2321
2323
(
2009
).
15.
A. M.
Akulshin
,
A. A.
Orel
, and
R. J.
McLean
, “
Collimated blue light enhancement in velocity-selective pumped Rb vapour
,”
J. Phys. B
45
,
015401
1
(
2012
).
16.
K. B.
MacAdam
,
A.
Steinbach
, and
C.
Wieman
, “
A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb
,”
Am. J. Phys.
60
,
1098
1110
(
1992
).
17.
C.
Leahy
,
J. T.
Hastings
, and
P. M.
Wilt
, “
Temperature dependence of Doppler-broadening in rubidium: An undergraduate experiment
,”
Am. J. Phys.
65
,
367
371
(
1997
).
18.
D. A.
Van Baak
, “
Resonant Faraday rotation as a probe of atomic dispersion
,”
Am. J. Phys.
64
,
724
735
(
1996
).
19.
K. G.
Libbrecht
and
M. W.
Libbrecht
, “
Interferometric measurement of the resonant absorption and refractive index in rubidium gas
,”
Am. J. Phys.
74
,
1055
1060
(
2006
).
20.
A. J.
Olson
,
E. J.
Carlson
, and
S. K.
Mayer
, “
Two-photon spectroscopy of rubidium using a grating-feedback diode laser
,”
Am. J. Phys.
74
,
218
223
(
2006
).
21.
N.
Belcher
,
E. E.
Mikhailov
, and
I.
Novikova
, “
Atomic clocks and coherent population trapping: Experiments for undergraduate laboratories
,”
Am. J. Phys.
77
,
988
998
(
2009
).
22.
A. J.
Olson
and
S. K.
Mayer
, “
Electromagnetically induced transparency in rubidium
,”
Am. J. Phys.
77
,
116
121
(
2009
).
23.
M. D.
Matlin
and
D. J.
McGee
, “
Photorefractive nonlinear optics in the undergraduate physics laboratory
,”
Am. J. Phys.
65
,
622
634
(
1997
).
24.
K.-E.
Peiponen
,
R.
Uma Maheswari
,
T.
Jaaskelainen
, and
C.
Gu
, “
Demonstrating nonlinear optical phenomena with Chinese tea
,”
Am. J. Phys.
61
,
937
938
(
1993
).
25.
D. C.
Haueisen
, “
Description of nonlinear optics on an atomic scale
,”
Am. J. Phys.
41
,
1251
1254
(
1973
).
26.
P. K.
Ghosh
and
P. P.
Banerjee
, “
A simplified physical picture of phase conjugation using k-space formalism and ray optics
,”
Am. J. Phys.
61
,
237
242
(
1993
).
27.
The identification of commercial suppliers and part numbers is given to provide thorough details. This identification is not intended as an endorsement or recommendation of these particular suppliers; alternate suppliers might provide similar equipment that meets or exceeds the performance of the equipment listed.
28.
A. M.
Akulshin
,
R. J.
McLean
,
A. I.
Sidorov
, and
P.
Hannaford
, “
Coherent and collimated blue light generated by four-wave mixing in Rb vapour
,”
Opt. Exp.
17
,
22861
22870
(
2009
).
29.
B. E. A.
Saleh
and
M. C.
Teich
,
Fundamentals of Photonics
(
Wiley
,
New York
,
1991
), p.
740
.
30.
M. O.
Scully
and
M. S.
Zubairy
,
Quantum Optics
(
Cambridge
,
New York
,
1997
), p.
160
.
31.
G.
Morigi
,
S.
Frnake-Arnold
, and
G.
Oppo
, “
Phase-dependent interaction in a four-level atomic configuration
,”
Phys. Rev. A
66
,
053409
1
(
2002
).
32.
J. E.
Bjorkholm
and
P. F.
Liao
, “
Line shape strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state
,”
Phys. Rev. A
14
,
751
760
(
1976
).
33.
J. J.
Maki
,
N. S.
Campbell
,
C. M.
Grande
,
R. P.
Knorpp
, and
D. H.
McIntyre
, “
Stabilized diode-laser system with grating feedback and frequency-offset locking
,”
Opt. Commun.
102
,
251
256
(
1993
).
34.
A. S.
Arnold
,
J. S.
Wilson
, and
M. G.
Boshier
, “
A simple extended-cavity diode laser
,”
Rev. Sci. Instrum.
69
,
1236
1239
(
1998
).
35.
C. J.
Hawthorn
,
K. P.
Weber
, and
R. E.
Scholten
, “
Littrow configuration tunable extended cavity diode laser with fixed direction output beam
,”
Rev. Sci. Instrum.
72
,
4477
4499
(
2001
).
36.
A.
Hemmerich
,
D. H.
McIntyre
,
D.
Schropp
, Jr.
,
D.
Meschede
, and
T. W.
Hänsch
, “
Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy
,”
Opt. Commun.
75
,
118
122
(
1990
).
37.
C. C.
Bradley
,
J.
Chen
, and
R. G.
Hulet
, “
Instrumentation for stable operation of laser diodes
,”
Rev. Sci. Instrum.
61
,
2097
2101
(
1990
).
38.
R. S.
Conroy
,
A.
Carleton
,
A.
Carruthers
,
B. D.
Sinclair
,
C. F.
Rae
, and
K.
Dholakia
, “
A visible extended cavity diode laser for the undergraduate laboratory
,”
Am. J. Phys.
68
,
925
931
(
2000
).
39.
Examples include New Focus Tunable Laser TLB-6312, Thorlabs tunable laser TL780-T, Thorlabs laser diode current controller LDC201U, Thorlabs temperature controller TED200, MogLabs MOGbox, and Stanford Research Systems LDC501.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.