We present a collection of new, open-source computational tools for numerically modeling recent large-scale observational data sets using modern cosmology theory. These tools allow both students and researchers to constrain the parameter values in competitive cosmological models, thereby discovering both the accelerated expansion of the universe and its composition (e.g., dark matter and dark energy). These programs have several features to help the non-cosmologist build an understanding of cosmological models and their relation to observational data, including a built-in collection of several real observational data sets. The current list of built-in observations includes several recent supernovae Type-Ia surveys, baryon acoustic oscillations, the cosmic microwave background radiation, gamma-ray bursts, and measurements of the Hubble parameter. In this article, we discuss specific results for testing cosmological models using these observational data.

1.
The Nobel Prize in Physics 2011, Nobelprize.org, 15 Aug
2012
, <http://www.nobelprize.org/nobel_prizes/physics/laureates/2011>.
2.
A. G.
Riess
 et al, “
Observational evidence from supernovae for an accelerating universe and a cosmological constant
,”
Astron. J.
116
,
1009
1038
(
1998
);
B. P.
Schmidt
 et al, “
The high-Z supernova search: Measuring cosmic deceleration and global curvature of the universe
,”
Astrophys. J.
507
,
46
63
(
1998
).
3.
S.
Perlmutter
 et al, “
Measurements of omega and lambda from 42 high-redshift supernovae
,”
Astrophys. J.
517
,
565
586
(
1999
).
4.
J.
Dunkley
,
E.
Komatsu
,
D. L.
Larson
, and
M. R.
Nolta
, The WMAP Team data center is available online at <http://lambda.gsfc.nasa.gov/>;
D.
Larson
 et al, “
Seven-year Wilikinson microwave anisotropy probe (WMAP) observations: Power spectra and WAMP-derived parameters
,”
Astrophys. J. Suppl. Ser.
192
(
16
),
1
19
(
2011
), e-print arXiv:1001.4635;
N.
Jarosik
 et al, “
Seven-year Wilikinson microwave anisotropy probe (WMAP) observations: Sky maps, systematic errors, and basic results
,”
Astrophys. J. Suppl. Ser.
192
(
14
),
1
14
(
2011
), e-print arXiv:1001.4744;
E.
Komatsu
 et al, “
Seven-year Wilikinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation
,”
Astrophys. J. Suppl. Ser.
192
(
18
),
1
47
(
2011
), e-print arXiv:1001.4538;
B.
Gold
 et al, “
Seven-year Wilikinson microwave anisotropy probe (WMAP) observations: Galatic foreground emission
,”
Astrophys. J. Suppl. Ser.
192
(
15
),
1
28
(
2011
);
C. L.
Bennett
 et al, “
Seven-year Wilikinson microwave anisotropy probe (WMAP) observations: Are there cosmic microwave background anomalies
,”
Astrophys. J. Suppl. Ser.
192
(
17
),
1
19
(
2011
);
J. L.
Weiland
 et al, “
Seven-year Wilikinson microwave anisotropy probe (WMAP) observations: Planets and celestial calibration
,”
Astrophys. J. Suppl. Ser.
192
(
19
),
1
21
(
2011
).
5.
A.
Belenkiy
, “
Alexander Friedmann and the origins of modern cosmology
,”
Phys. Today
65
(
10
),
38
43
(
2012
).
6.
N.
Christensen
and
T.
Moore
, “
Teaching general relativity to undergraduates
,”
Phys. Today
65
(
6
),
41
47
(
2012
).
7.
S.
Sonego
and
V.
Talamini
, “
Qualitative study of perfect-fluid Friedmann-Lemaitre-Robertson-Walker models with a cosmological constant
,”
Am. J. Phys.
80
(
8
),
670
679
(
2012
).
8.
CosmoEJS is available online from ComPADRE at <http://www.compadre.org/osp/items/detail.cfm?ID=12406>.
9.
See supplementary material at http://dx.doi.org/10.1119/1.4798490 for a table of all data sets included in this version of CosmoEJS with descriptions, as well as proper formatting for user supplied data sets.
10.
E. L.
Wright
, “
A cosmology calculator for the world wide web
,”
Publ. Astron. Soc. Pac.
118
(
850
),
1711
1715
(
2006
).
11.
E.
Rykoff
, “
CosmoCalc
,” (Version 2.4) [Mobile application software], retrieved from <http://itunes.apple.com> (
2012
).
12.
A.
Lewis
and
S.
Bridle
, “
Cosmological parameters from CMB and other data: A Monte-Carlo approach
,”
Phys. Rev. D.
66
,
103511
103526
(
2002
), program available online at <http://cosmologist.info/cosmomc/>;
A.
Lewis
,
A.
Challinor
, and
A.
Lasenby
, “
Efficient computation of CMB anisotropies in closed FRW Models
,”
Astrophys. J.
538
,
473
476
(
2000
), program available online at <http://camb.info>.
13.
A.
Refregier
,
A.
Amara
,
A.
Rassat
, and
T.
Kitching
, “
iCosmo: An interactive cosmology package
,”
Astron. Astrophys.
528
(
A33
),
1
6
(
2011
), program available online at <http://icosmo.org>.
14.
The redshift z is defined by z(λobsλemit)/λemit, where λobs and λemit are the observed and emitted wavelengths, respectively, for the source.
15.
L.
Bergström
and
A.
Goobar
,
Cosmology and Particle Astrophysics
, 2nd ed. (
Springer-Praxis
,
Chichester, UK
,
2004
), pp.
1
363
.
16.
This is only comparatively speaking; the relationship between time and redshift can only be calculated once a specific model is chosen. See Sec. II B.
17.
Actually, we evolve the scale factor a and calculate the time t (in Gyrs), but switch the x- and y-axes, since this is the more common convention.
18.
L.
Anderson
 et al, “
The clustering of galaxies in the SDSS-III Baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy survey
,”
Mon. Not. R. Astron. Soc.
427
(4),
3435
3467
(
2012
);
B. A.
Reid
 et al, “
The clustering of galaxies in the SDSS-III Baryon oscillation spectroscopic survey: Measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering
,”
Mon. Not. R. Astron. Soc.
426
(4),
2719
2737
(
2012
).
19.
M.
Moresco
,
A.
Cimatti
,
R.
Jimenez
,
L.
Pozzetti
 et al, “
Improved constraints on the expansion rate of the Universe up toz1.1 from the spectroscopic evolution of cosmic chronometers
,”
J. Cosmol. Astropart. Phys.
8
,
006
(
2012
);
M.
Moresco
,
L.
Verde
,
L.
Pozzetti
,
R.
Jimenez
, and
A.
Cimatti
, “
New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z1.75
,”
J. Cosmol. Astropart. Phys.
7
,
053
(
2012
).
20.
Here we only include a partial list of the most recent surveys for each of the observations, whereas CosmoEJS contains several surveys for each observation.
R.
Amanullah
 et al, “
Spectra and light curves of six type la Supernovae at0.511<z<1.12 and the Union2 Compilation
,”
Astrophys. J.
716
,
712
738
(
2010
), arXiv:1004.1711;
B. A.
Reid
 et al, “
Cosmological constraints from the clustering of the sloan digital sky survey DR7 luminous red galaxies
,”
Mon. Not. R. Astron. Soc.
404
,
60
85
(
2010
), e-print arXiv:0907.1659;
W. J.
Percival
 et al, “
Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample
,”
Mon. Not. R. Astron. Soc.
401
,
2148
2168
(
2010
), e-print arXiv:0907.1660;
H.
Wei
, “
Observational constraints on cosmological models with the updated long gamma-ray bursts
,”
J. Cosmol. Astropart. Phys.
JCAP1008
,
020
1
020
24
(
2010
);
F.
Beutler
 et al, “
The 6df galaxy survey: Baryon acoustic oscillations and the local hubble constant
,”
Mon. Not. R. Astron. Soc.
416
,
3017
3032
(
2010
), e-print arxiv:1106.3366;
C.
Blake
 et al, “
The WiggleZ dark energy survey: The growth rate of cosmic structure since redshiftz = 0.9
,”
Mon. Not. R. Astron. Soc.
415
,
2876
2891
(
2011
);
C.
Blake
 et al, “
The WiggleZ dark energy survey: Testing the cosmological model with baryon acoustic oscillations at z = 0.6
,”
Mon. Not. R. Astron. Soc.
415
,
2892
2909
(
2011
).
21.
It is important to compare the model both numerically and by visually inspecting the plots, but also to make sure the model is physical (e.g., Ωm=0 is unphysical, due to no matter).
22.
A.
Albrecht
 et al, “
Report of the dark energy task force
,” arXiv: astro-ph/0609591,
1
145
(
2006
);
M.
Ishak
, “
Remarks on the formulation of the cosmological constant/dark energy problems
,”
Found. Phys. J.
37
(
10
),
1470
1498
(
2007
).
23.
A detailed derivation of these models and an analysis for some special cases was recently made available. See Refs. 5–7.
24.
In cosmology, the Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime metric describes a homogenous and isotropic spacetime. When using the FLRW metric, the equation of motion is referred to as the Friedmann equation.
25.
W.
Rindler
,
Relativity: Special, General, and Cosmological
, 2nd ed. (
Oxford U.P.
,
New York
,
2006
).
26.
Recent data (see Refs. 4 and 18–20) shows Ω01, although a more precise survey—the CMB ESA PLANCK satellite, available online at <http://www.esa.int/SPECIALS/Planck/index.html/>—may uncover a slight offset which can be modified in the source code. See supplementary information in Ref. 9.
27.
M.
Chevallier
and
D.
Polarski
, “
Accelerating universes with scaling dark matter
,”
Int. J. Mod. Phys. D
10
,
213
223
(
2001
), e-print arXiv:gr-qc/0009008.
28.
W.
Hu
and
S.
Donaldson
, “
Cosmic microwave background anisotropies
,”
Annu. Rev. Astron. Astrophys.
40
,
171
(
2002
), available online at <http://background.uchicago.edu/~whu/araa/araa.html>; for a short cut to the acoustic peaks, see <http://backgroun.uchicago.edu/~whu/araa/node6.html>.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.