Using Fermat's least-optical-path principle, the family of ray trajectories through a special (but common) type of a gradient refractive index lens n(r)=n0+ΔnR/r is solved analytically. The solution gives a ray equation r(ϕ) that is closely related to Rutherford scattering trajectories; we therefore refer to this refraction process as “photonic Rutherford scattering.” It is shown that not only do the classical limits correspond but also the wave-mechanical pictures coincide—the time-independent Schrödingier equation and the Helmholtz equation permit the same mapping between the scattering of massive particles and optical scalar waves. Scattering of narrow beams of light finally recovers the classical trajectories. The analysis suggests that photothermal single-particle microscopy measures photonic Rutherford scattering in specific limits and allows for an individual single-scatterer probing. A macroscopic experiment is demonstrated to directly measure the scattering angle to impact parameter relation, which is otherwise accessible only indirectly in Rutherford-scattering experiments.

1.
E.
Rutherford
, “
The scattering of alpha and beta particles by matter and the structure of the atom
,”
Philos. Mag.
21
(
125
),
669
688
(
1911
).
2.
H.
Geiger
and
E.
Marsden
, “
On a diffuse reflection of the α-particles
,”
Proc. R. Soc. London, Ser. A
82
(
557
),
495
500
(
1909
).
3.
E. R.
Wicher
, “
Elementary Rutherford scattering simulator
,”
Am. J. Phys.
33
(
8
),
635
636
(
1965
).
4.
J.
Evans
,
K. K.
Nandi
, and
A.
Islam
, “
The optical-mechanical analogy in general relativity: Exact Newtonian forms for the equations of motion of particles and photons
,”
Gen. Relat. Gravit.
28
(
4
),
413
439
(
1996
).
5.
J.
Evans
,
K. K.
Nandi
, and
A.
Islam
, “
The optical-mechanical analogy in general relativity: New methods for the paths of light and of the planets
,”
Am. J. Phys.
64
(
11
),
1404
1415
(
1996
).
6.
M.
Born
and
E.
Wolf
,
Principles of Optics
, 6th ed. (
Pergamon Press Ltd.
,
London
,
1980
).
7.
J.
Evans
and
M.
Rosenquist
, “
‘F = ma’ optics
,”
Am. J. Phys.
54
(
10
),
876
883
(
1986
).
8.
J.
Evans
, “
Simple forms for equations of rays in gradient-index lenses
,”
Am. J. Phys.
58
(
8
),
773
778
(
1990
).
9.
A. A.
Rangwala
,
V. H.
Kulkarni
, and
A. A.
Rindani
, “
Laplace-Runge-Lenz vector for a light ray trajectory in r1 media
,”
Am. J. Phys.
69
(
7
),
803
809
(
2001
).
10.
D.
Drosdoff
and
A.
Widom
, “
Snell's law from an elementary particle viewpoint
,”
Am. J. Phys.
73
(
10
),
973
975
(
2005
).
11.
H. S.
Carslaw
and
J. C.
Jaeger
,
Conduction of Heat in Solids
, 2nd ed. (
Oxford U.P.
,
USA
,
1986
).
12.
The differential equation for heat diffusion around a point heat source Q at the coordinate origin is Qδ(r)=κ2T, while the electrostatic Coulomb potential V for a point charge q is determined by 2V=qδ(r)/ϵ0. These equations are formally identical in structure, such that the temperature field T(r) [Eq. (4)] resembles the Coulomb potential. However, the integration constant for T(r) is the ambient temperature T0 at infinite distance.
13.
Jean
Sivardiere
, “
Perturbed elliptic motion
,”
Eur. J. Phys.
7
,
283
286
(
1986
).
14.
H.
Goldstein
,
C. P.
Poole
, and
J.
Safko
,
Classical Mechanics
, 3rd ed. (
Addison-Wesley
,
San Francisco
,
2000
).
15.
C. G.
Darwin
, “
XXV. On some orbits of an electron
,”
Philos. Mag.
25
(
146
),
201
210
(
1913
).
16.
A.
Sommerfeld
, “
Zur Quantentheorie der Spektrallinien
,”
Ann. Phys.
356
(
17
),
1
94
(
1916
);
A.
Sommerfeld
, “
Zur Quantentheorie der Spektrallinien
,”
Ann. Phys.
356
(
18
),
125
167
(
1916
).
17.
L. D.
Landau
and
E. M.
Lifschitz
,
Klassische Feldtheorie
, 8th ed. (
Akademie-Verlag
Berlin
,
1992
).
18.
T. H.
Boyer
, “
Unfamiliar trajectories for a relativistic particle in a Kepler or Coulomb potential
,”
Am. J. Phys.
72
(
8
),
992
997
(
2004
).
19.
J. W.
Adolph
,
A. L.
Garcia
,
W. G.
Harter
,
G. C.
McLaughlin
,
R. R.
Shiffman
, and
V. G.
Surkus
, “
Some geometrical aspects of classical Coulomb scattering
,”
Am. J. Phys.
40
(
12
),
1852
(
1972
).
20.
I.
Samengo
,
R. G.
Pregliasco
, and
R. O.
Barrachina
, “
Classical stationary particle distributions in collision processes
,”
J. Phys. B
32
(
8
),
1971
1986
(
1999
).
21.
Fernando
de Felice
, “
On the gravitational field acting as an optical medium
,”
Gen. Relat. Gravit.
2
(
4
),
347
357
(
1971
).
22.
S.
Deguchi
and
W. D.
Watson
, “
Diffraction in gravitational lensing for compact objects of low mass
,”
Astrophys. J.
307
(
1
),
30
37
(
1986
).
23.
K. K.
Nandi
and
A.
Islam
, “
On the optical mechanical analogy in general relativity
,”
Am. J. Phys.
63
(
3
),
251
256
(
1995
).
24.
Schott North America, “
Temperature Coefficient of the Refractive Index
,” Technical Information paper TIE-19 (
2008
), available online at <http://www.us.schott.com/advanced_optics/english/community/technical-papers-and-tools/tie.html>.
25.
This was professionally done by Realityservice GmbH, Leipzig; see results in Fig. 4.
26.
See supplementary material at http://dx.doi.org/10.1119/1.4798259 for including a simulation program and additional pictures.
27.
M.
Selmke
,
M.
Braun
, and
F.
Cichos
, “
Photothermal single particle microscopy: Detection of a nano-lens
,”
ACS Nano
6
(
3
),
2741
2749
(
2012
).
28.
M.
Selmke
,
M.
Braun
, and
F.
Cichos
, “
Nano-lens diffraction around a single heated nano particle
,”
Opt. Express
20
(
7
),
8055
8070
(
2012
).
29.
M.
Selmke
,
M.
Braun
, and
F.
Cichos
, “
Gaussian beam photothermal single particle microscopy
,”
J. Opt. Soc. Am. A
29
(
10
),
2237
2241
(
2012
).
30.
A.
Gaiduk
,
M.
Yorulmaz
,
P. V.
Ruijgrok
, and
M.
Orrit
, “
Room-temperature detection of a single molecule's absorption by photothermal contrast
,”
Science
330
(
6002
),
353
356
(
2010
).
31.
W. E.
Frahn
, “
Fresnel and Fraunhofer diffraction in nuclear processes
,”
Nucl. Phys.
75
(
3
),
577
591
(
1966
).
32.
W. E.
Frahn
, “
Diffraction systematics of nuclear and particle scattering
,”
Phys. Rev. Lett.
26
(
10
),
568
571
(
1971
).
33.
C.
Kurtsiefer
,
T.
Pfau
, and
J.
Mlynek
, “
Measurement of the Wigner function of an ensemble of helium atoms
,”
Nature
386
(
6621
),
150
153
(
1997
).
34.
A.
Goussev
, “
Huygens-Fresnel-Kirchhoff construction for quantum propagators with application to diffraction in space and time
,”
Phys. Rev. A
85
(
1
),
013626
(
2012
).
35.
B. E. A.
Saleh
and
M. C.
Teich
,
Fundamentals of Photonics
(
John Wiley and Sons
,
New York
,
1991
).
36.
W.
Gordon
, “
Über den Stoss zweier Punktladungen nach der Wellenmechanik
,”
Z. Phys.
48
(
3,4
),
180
191
(
1928
).
37.
V. G.
Baryshevskii
,
I. D.
Feranchuk
, and
P. B.
Kats
, “
Regularization of the Coulomb scattering problem
,”
Phys. Rev. A
70
(
5
),
052701
(
2004
).
38.
L. D.
Landau
and
E. M.
Lifschitz
,
Quantenmechanik
, 8th ed. (
Akademie-Verlag
,
Berlin
,
1988
).
39.
N. F.
Mott
, “
The solution of the wave equation for the scattering of particles by a Coulombian centre of force
,”
Proc. R. Soc. London, Ser. A
118
(
780
),
542
549
(
1928
).
40.
W.
Zakowicz
, “
On the Extincti on Paradox
,”
Acta Phys. Pol., A
101
(
3
),
369
385
(
2002
), available at http://przyrbwn.icm.edu.pl/APP/ABSTR/101/a101-3-369.html.
41.
G.
Barton
, “
Rutherford scattering in two dimensions
,”
Am. J. Phys.
51
(
5
),
420
422
(
1983
).
42.
D.
Yafaev
, “
On the classical and quantum Coulomb scattering
,”
J. Phys. A: Math. Gen.
30
(
19
),
6981
6992
(
1997
).
43.
W.
Zakowicz
, “
Classical properties of quantum scattering
,”
J. Phys. A: Math. Gen.
36
(
15
),
4445
4464
(
2003
).
44.
W.
Zakowicz
, “
Scattering of narrow stationary beams and short pulses on spheres
,”
Europhys. Lett.
85
(
4
),
40001
1
(
2009
).
45.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
, Third edition (
Cambridge University Press
,
Cambridge
,
2006
).
46.
D.
Boyer
,
P.
Tamarat
,
A.
Maali
,
B.
Lounis
, and
M.
Orrit
, “
Photothermal imaging of nanometer-sized metal particles among scatterers
,”
Science
297
(
5584
),
1160
1163
(
2002
).
47.
S.
Berciaud
,
D.
Lasne
,
G.
Blab
,
L.
Cognet
, and
B.
Lounis
, “
Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment
,”
Phys. Rev. B
73
,
045424
1
(
2006
).
48.
M.
Selmke
and
F.
Cichos
, “
Photothermal single particle Rutherford scattering microscopy
,”
Phys. Rev. Lett.
110
,
103901
1
(
2013
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.