Since the pioneering work of Christiaan Huygens on the sympathy of pendulum clocks, synchronization phenomena have been widely observed in nature and science. In this paper, we describe a simple experiment, with a thermoacoustic oscillator driven by a loudspeaker, which exhibits several aspects of synchronization. Both the synchronization region of leading order around the oscillator's natural frequency f0 and regions of higher order (around f0∕2 and f0∕3) are measured as functions of the loudspeaker voltage and frequency. We also show that increasing the coupling between the loudspeaker and the oscillator gives rise under some circumstances to the death of self-sustained oscillations (quenching). Moreover, two additional set of experiments are performed: the first investigates a feedback loop in which the signal captured by the microphone is delivered to the loudspeaker through a phase-shifter; the second investigates the nontrivial interaction between the loudspeaker and the oscillator when the latter acts as a relaxation oscillator (spontaneous and periodic onset/damping of self-sustained oscillations). The experiment is easy to build and highly demonstrative; it might be of interest for classroom demonstrations or an instructional lab dealing with nonlinear dynamics.

1.
C.
Huygens
,
Oeuvres Completes de Christiaan Huygens
, edited by
M.
Nijhoff
(
Société Hollandaise des Sciences
,
1893
).
2.
B.
Bennett
,
M. F.
Schatz
,
H.
Rockwood
, and
K.
Wisenfeld
, “
Huygens' clocks
,”
Proc. R. Soc. London Ser. A
458
,
563
579
(
2002
).
3.
I. I.
Blekhman
,
Synchronization in Science and Technology
(
ASME
,
New York
,
1988
).
4.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Science
(
Springer
,
Berlin
,
2001
).
5.
R. C.
Hilborn
and
N. B.
Tufillaro
, “
Resource Letter: ND-1: Nonlinear dynamics
,”
Am. J. Phys.
65
,
822
834
(
1997
).
6.
J. W.
Strutt
(Lord Rayleigh),
The Theory of Sound
(
Dover
,
New York
,
1945
).
7.
J.
Pantaleone
, “
Synchronization of metronomes
,”
Am. J. Phys.
70
,
992
1000
(
2002
).
8.
B.
Van der Pol
and
J.
Van der Mark
, “
Frequency demultiplication
,”
Nature
120
,
363
364
(
1927
).
9.
G.
Qin
,
D.
Gong
,
R.
Li
, and
X.
Wen
, “
Rich bifurcation behavior of the driven Van der Pol oscillator
,”
Phys. Lett. A
141
,
412
416
(
1989
).
10.
M.
Abel
,
S.
Bergweiler
, and
R.
Gerhard-Multhaupt
, “
Synchronization of organ pipes: Experimental observations and modeling
,”
J. Acoust. Soc. Am.
119
,
2467
2475
(
2006
).
11.
M.
Abel
,
K.
Ahnert
, and
S.
Bergweiler
, “
Synchronization of sound sources
,”
Phys. Rev. Lett.
103
,
114301
1
(
2009
).
12.
C.
Sondhauss
, “
Über die Schallschwingungen der luft in erhitzten Glassröhren und in gedeckten Pfeifen von ungleicher Weite
,”
Ann. Phys. (Leipzig)
79
,
1
(
1850
).
13.
For a simple example of how the critical temperature gradient depends on the working fluid, see
D.
Noda
and
Y.
Ueda
, “
A thermoacoustic oscillator powered by vaporized water and ethanol
,”
Am. J. Phys.
81
(
2
),
124
126
(
2013
).
14.
G. W.
Swift
,
Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
(
Acoustical Society of America
,
2001
).
15.
S. L.
Garrett
, “
Resource Letter: TA-1: Thermoacoustic engines and refrigerators
,”
Am. J. Phys.
72
,
11
17
(
2004
).
16.
T.
Yazaki
,
S.
Sugioka
,
F.
Mizutani
, and
H.
Mamada
, “
Nonlinear dynamics of a forced thermoacoustic oscillation
,”
Phys. Rev. Lett.
64
,
2515
2518
(
1990
).
17.
T.
Yazaki
, “
Experimental observation of thermoacoustic turbulence and universal properties at the quasiperiodic transition to chaos
,”
Phys. Rev. E
48
,
1806
1818
(
1993
).
18.
G.
Müller
and
W.
Lauterborn
, “
Experiments with the thermoacoustic oscillator physical and musical
,” in
Proceedings International Symposium of Musical Acoustics
, Le Normont, Dourdan, France,
1995
, pp.
178
183
.
19.
W.
Lauterborn
, “
Nonlinear dynamics in acoustics
,”
Acta Acust. United Acust.
82
,
Suppl. 1
,
S46
S55
(
1996
).
20.
P. S.
Spoor
and
G. W.
Swift
, “
The Huygens entrainment phenomenon and thermoacoustic engines
,”
J. Acoust. Soc. Am.
108
,
588
599
(
2000
).
21.
C.
Desjouy
,
G.
Penelet
, and
P.
Lotton
, “
Active control of thermoacoustic amplification in an annular engine
,”
J. Appl. Phys.
108
,
114904
1
(
2010
).
22.
S. L.
Garrett
and
R. L.
Chen
, “
Build an acoustic laser
,”
Echoes
10
(
3
),
4
5
(
2000
).
23.
A. S.
Pikovsky
,
M. G.
Rosenblum
, and
J.
Kurths
, “
Phase synchronization in regular and chaotic systems
,”
Int. Journ. Bifurc. Chaos
10
,
2291
2306
(
2000
).
24.
G.
Penelet
,
M.
Guedra
,
V.
Gusev
, and
T.
Devaux
, “
Simplified account of Rayleigh streaming for the description of nonlinear processes leading to steady state sound in thermoacoustic engines
,”
Int. J. Heat Mass Transfer
55
,
6042
6053
(
2012
).
25.
J. S.
Lopes
,
A. A.
Melo
, and
V. S.
Oliveira
, “
A simple phase shifting circuit
,”
Phys. Educ.
17
,
238
240
(
1982
).
26.
R. V.
Jensen
, “
Synchronization of driven nonlinear oscillators
,”
Am. J. Phys.
70
,
607
619
(
2002
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.