Second quantization is a powerful technique for describing quantum mechanical processes in which the number of excitations of a single particle is not conserved. A textbook example of second quantization is the presentation of the simple harmonic oscillator in terms of creation and annihilation operators, which, respectively, represent addition or removal of quanta of energy from the oscillator. Our aim in this article is to bolster this textbook example. Accordingly, we explore the physics of coupled second-quantized oscillators. These explorations are phrased as exactly solvable eigenvalue problems, the mathematical structure providing a framework for the physical understanding. The examples we present can be used to enhance the discussion of second-quantized harmonic oscillators in the classroom, to make a connection to the classical physics of coupled oscillators, and to acquaint students with systems employed at the frontiers of contemporary physics research.

1.
See any undergraduate or graduate quantum mechanics textbook, such as
R.
Liboff
,
Introductory Quantum Mechanics
(
Addison-Wesley
,
United States
,
2002
), Chap. 7.
2.
F. A.
Berezin
,
The Method of Second Quantization
(
Academic Press
,
United States
,
1966
).
3.
L. I.
Schiff
,
Quantum Mechanics
(
McGraw-Hill Education
,
United States
,
1968
).
4.
D. H.
Kobe
, “
Second quantization in nonrelativistic quantum mechanics
,”
Am. J. Phys.
51
,
312
315
(
1983
).
5.
C. C.
Gerry
and
P. L.
Knight
,
Introductory Quantum Optics
(
Cambridge U.P.
,
Cambridge
,
2008
), Chap. 7.
6.
T. J.
Kippenberg
and
K. J.
Vahala
, “
Cavity optomechanics: Back-action at the mesoscale
,”
Science
321
,
1172
1176
(
2008
).
7.
F.
Marquardt
and
S. M.
Girvin
, “
Trend: Optomechanics
,”
Physics
2
,
40
(
2009
).
8.
S. T.
Thornton
and
J. B.
Marrion
,
Classical Dynamics of Particles and Systems
(
Brooks and Cole
,
United States
,
2003
).
9.
E.
Merzbacher
,
Quantum Mechanics
, 2nd ed. (
John Wiley and Sons
,
New York
,
1997
), Chap. 15, Sec. 9.
10.

More general displacements, which can translate momentum as well as position, can be defined by assuming α to be a complex number.

11.

More general squeezing, which can squeeze momentum as well as position, can be defined by assuming ξ to be a complex number.

12.
N.
Imoto
,
H. A.
Haus
, and
Y.
Yamamoto
, “
Quantum nondemolition measurement of the photon number via the optical Kerr effect
,”
Phys. Rev. A
32
,
2287
2292
(
1985
).
13.
J.
Lee
,
M.
Paternostro
,
C.
Ogden
,
Y. W.
Cheong
,
S.
Bose
, and
M. S.
Kim
, “
Cross-Kerr-based information transfer processes
,”
New J. Phys.
8
,
23
(
2006
).
14.
G. J.
Milburn
,
K.
Jacobs
, and
D. F.
Walls
, “
Quantum-limited measurements with the atomic force microscope
,”
Phys. Rev. A
50
,
5256
5263
(
1994
).
15.
S.
Bose
,
K.
Jacobs
, and
P. L.
Knight
, “
Preparation of nonclassical states in cavities with a moving mirror
,”
Phys. Rev. A
56
,
4175
4186
(
1997
).
16.
C. K.
Law
, “
Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation
,”
Phys. Rev. A
51
,
2537
2541
(
1995
).
17.
N.
Mavalvala
,
D. E.
McClelland
,
G.
Mller
,
D. H.
Reitze
,
R.
Schnabel
, and
B.
Willke
, “
Lasers and optics: Looking towards third generation gravitational wave detectors
,”
Gen. Relativ. Gravit.
43
,
569
592
(
2011
).
18.
J.
Chan
,
T. P.
Mayer Alegre
,
A. H.
Safavi-Naeini
,
J. T.
Hill
,
A.
Krause
,
S.
Groblacher
,
M.
Aspelmeyer
, and
O.
Painter
, “
Laser cooling of a nanomechanical oscillator into its quantum ground state
,”
Nature
478
,
89
92
(
2011
).
19.
S.
Groblacher
,
K.
Hammerer
,
M. R.
Vanner
, and
M.
Aspelmeyer
, “
Observation of strong coupling between a micromechanical resonator and an optical cavity field
,”
Nature
460
,
724
727
(
2009
).
20.
P.
Rabl
, “
Photon blockade effect in optomechanical systems
,”
Phys. Rev. Lett.
107
,
063601
1
063601
6
(
2011
).
21.
A.
Nunnenkamp
,
K.
Borkje
, and
S. M.
Girvin
, “
Single photon optomechanics
,”
Phys. Rev. Lett.
107
,
063602
1
063602
6
(
2011
).
22.
Z. Y.
Ou
and
L.
Mandel
, “
Violation of Bell's inequality and classical probability in a two-photon correlation experiment
,”
Phys. Rev. Lett.
61
,
50
53
(
1988
).
23.
A.
Rai
and
G. S.
Agarwal
, “
Quantum optical spring
,”
Phys. Rev. A
78
,
013831
1
013831
6
(
2008
).
24.
J. D.
Thompson
,
B. M.
Zwickl
,
A. M.
Jayich
,
F.
Marquardt
,
S. M.
Girvin
, and
J. G. E.
Harris
, “
Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane
,”
Nature
452
,
72
75
(
2008
).
25.
M.
Bhattacharya
,
H.
Uys
and
P.
Meystre
, “
Optomechanical trapping and cooling of partially reflective mirrors
,”
Phys. Rev. A
77
,
033819
1
033819
12
(
2008
).
26.
C.
Biancofiore
,
M.
Karuza
,
M.
Galassi
,
R.
Natali
,
P.
Tombesi
,
G.
Di Giuseppe
, and
D.
Vitali
, “
Quantum dynamics of an optical cavity coupled to a thin semitransparent membrane: Effect of membrane absorption
,”
Phys. Rev. A
84
,
033814
1
033814
12
(
2011
).
27.
O.
Romero-Isart
,
M. L.
Juan
,
R.
Quidant
, and
J. I.
Cirac
, “
Toward quantum superposition of living organisms
,”
New J. Phys.
12
,
033015
1
033015
16
(
2010
).
28.
J. B.
Hertzberg
,
T.
Rocheleau
,
T.
Ndukum
,
M.
Savva
,
A. A.
Clerk
, and
K. C.
Schwab
, “
Back-action-evading measurements of nanomechanical motion
,”
Nat. Phys.
6
,
213
217
(
2010
).
29.
T.
Brougham
,
G.
Chadzitaskos
, and
I.
Jex
, “
Transformation design and nonlinear Hamiltonians
,”
J. Mod. Optic.
56
,
1588
1597
(
2009
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.