The Malkus chaotic waterwheel, a tool to mechanically demonstrate Lorenzian dynamics, motivates the study of a chaotic sandwheel. We model the sandwheel in parallel with the waterwheel when possible, noting where methods may be extended and where no further analysis seems feasible. Numerical simulations are used to compare and contrast the behavior of the sandwheel with the waterwheel. Simulations confirm that the sandwheel retains many of the elements of chaotic Lorenzian dynamics. However, bifurcation diagrams show dramatic differences in where the order-chaos-order transitions occur.
REFERENCES
1.
E. N.
Lorenz
, “Deterministic nonperiodic flow
,” J. Atmos. Sci.
20
, 130
–141
(1963
).2.
H.
Haken
, “Analogy between higher instabilities in fluids and lasers
,” Phys. Lett. A
53
, 77
(1975
).3.
E.
Knobloch
, “Chaos in the segmented disc dynamo
,” Phys. Lett. A
82
, 439
–440
(1981
).4.
W. V. R.
Malkus
, “Non-periodic convection at high and low Prandtl number
,” Mem. Soc. R. Sci. Liege Collect
IV
, 125
–128
(1972
).5.
S. H.
Strogatz
, Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering
, Studies in Nonlinearity (Perseus Books Group
, 1994
).6.
M.
Kolár
and G.
Gumbs
, “Theory for the experimental observation of chaos in a rotating waterwheel
,” Phys. Rev. A
45
, 626
–637
(1992
).7.
F.
Gassmann
, “Noise-induced chaos-order transitions
,” Phys. Rev. E
55
, 2215
–2221
(1997
).8.
A.
Clauset
, N.
Grigg
, M.
Lim
, and E.
Miller
, “Chaos you can play in
,” SFI CSSS 2003 Proceedings
(2003
).9.
A. A.
Mishra
and S.
Sanghi
, “A study of the asymmetric Malkus waterwheel: The biased Lorenz equations
,” Chaos
, 16
, 013114
–1
(2006
).10.
L. E.
Matson
, “The Malkus-Lorenz water wheel revisited
,” Am. J. Phys.
75
, 1114
–1122
(2007
).11.
D.
Becerra-Alonso
, Deterministic Chaos in Malkus' Waterwheel: A Simple Dynamical System on the Verge of Low-Dimensional Chaotic Behaviour
(Lambert Academic Publishing
, Saarbrücken, Germany
, 2010
).12.
L.
Illing
, R. F.
Fordyce
, A. M.
Saunders
, and R.
Ormond
, “Experiments with a Malkus-Lorenz water wheel: Chaos and synchronization
,” Am. J. Phys.
80
, 192
–202
(2012
).13.
G.
Benettin
, L.
Galgani
, and J.
Strelcyn
, “Kolmogorov entropy and numerical experiments
,” Phys. Rev. A
14
, 2338
–2345
(1976
).14.
W. G.
Hoover
and H. A.
Posch
, “Direct measurement of Lyapunov exponents
,” Phys. Lett. A
113
, 82
–84
(1985
).© 2013 American Association of Physics Teachers.
2013
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.