The Malkus chaotic waterwheel, a tool to mechanically demonstrate Lorenzian dynamics, motivates the study of a chaotic sandwheel. We model the sandwheel in parallel with the waterwheel when possible, noting where methods may be extended and where no further analysis seems feasible. Numerical simulations are used to compare and contrast the behavior of the sandwheel with the waterwheel. Simulations confirm that the sandwheel retains many of the elements of chaotic Lorenzian dynamics. However, bifurcation diagrams show dramatic differences in where the order-chaos-order transitions occur.

1.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
2.
H.
Haken
, “
Analogy between higher instabilities in fluids and lasers
,”
Phys. Lett. A
53
,
77
(
1975
).
3.
E.
Knobloch
, “
Chaos in the segmented disc dynamo
,”
Phys. Lett. A
82
,
439
440
(
1981
).
4.
W. V. R.
Malkus
, “
Non-periodic convection at high and low Prandtl number
,”
Mem. Soc. R. Sci. Liege Collect
IV
,
125
128
(
1972
).
5.
S. H.
Strogatz
,
Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering
, Studies in Nonlinearity (
Perseus Books Group
,
1994
).
6.
M.
Kolár
and
G.
Gumbs
, “
Theory for the experimental observation of chaos in a rotating waterwheel
,”
Phys. Rev. A
45
,
626
637
(
1992
).
7.
F.
Gassmann
, “
Noise-induced chaos-order transitions
,”
Phys. Rev. E
55
,
2215
2221
(
1997
).
8.
A.
Clauset
,
N.
Grigg
,
M.
Lim
, and
E.
Miller
, “
Chaos you can play in
,”
SFI CSSS 2003 Proceedings
(
2003
).
9.
A. A.
Mishra
and
S.
Sanghi
, “
A study of the asymmetric Malkus waterwheel: The biased Lorenz equations
,”
Chaos
,
16
,
013114
1
(
2006
).
10.
L. E.
Matson
, “
The Malkus-Lorenz water wheel revisited
,”
Am. J. Phys.
75
,
1114
1122
(
2007
).
11.
D.
Becerra-Alonso
,
Deterministic Chaos in Malkus' Waterwheel: A Simple Dynamical System on the Verge of Low-Dimensional Chaotic Behaviour
(
Lambert Academic Publishing
,
Saarbrücken, Germany
,
2010
).
12.
L.
Illing
,
R. F.
Fordyce
,
A. M.
Saunders
, and
R.
Ormond
, “
Experiments with a Malkus-Lorenz water wheel: Chaos and synchronization
,”
Am. J. Phys.
80
,
192
202
(
2012
).
13.
G.
Benettin
,
L.
Galgani
, and
J.
Strelcyn
, “
Kolmogorov entropy and numerical experiments
,”
Phys. Rev. A
14
,
2338
2345
(
1976
).
14.
W. G.
Hoover
and
H. A.
Posch
, “
Direct measurement of Lyapunov exponents
,”
Phys. Lett. A
113
,
82
84
(
1985
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.