Some general properties of photon correlations are discussed in a simple way through an analysis of the two-detector measurement scheme. It is shown that the assumption of the discreteness of the random process leads directly to the conclusion that the zero-delay value of the correlation function is only bound to be non-negative. The adopted approach allows discussing in a more intuitive way the photon correlation properties of different optical fields, including non-classical fields presenting an apparent violation of the Cauchy-Schwarz inequality. The comparison between the two- and the single-detector experiment clarifies the role of the operator ordering in the definition of the correlation function.
REFERENCES
1.
R. J.
Glauber
, “The quantum theory of optical coherence
,” Phys. Rev.
130
, 2529
–2539
(1963
).2.
R. J.
Glauber
, Quantum Optics and Electronics, Les Houches, 1964
, edited by C.
De Witt
, A.
Blandin
and C.
Cohen Tannoudji
(Gordon and Breach
, New York
, 1965
), p. 63
.3.
R.
Hanbury-Brown
and R. Q.
Twiss
, “Correlations between photons in two coherent beams of light
,” Nature
177
, 27
–29
(1956
).4.
5.
L.
Mandel
and E.
Wolf
, Optical Coherence and Quantum Optics
(Cambridge U.P.
, Cambridge
, 1995
).6.
7.
D. F.
Walls
and G. J.
Milburn
, Quantum Optics
(Springer-Verlag
, Berlin
, 1994
).8.
M. O.
Scully
and M. S.
Zubairy
, Quantum Optics
(Cambridge U.P.
, Cambridge
, 1997
).9.
See, for instance,
H. Z.
Cummins
and E. R.
Pike
, Editors, Photon Correlation Spectroscopy and Velocimetry
(Plenum Press
, New York
, 1977
).10.
W. I.
Goldburg
, “Dynamic light scattering
,” Am. J. Phys.
67
, 1152
–1160
(1999
).11.
See, in particular, Chapter 5 in Ref. 6.
12.
S.
Chopra
and L.
Mandel
, “Higher-order correlation properties of a laser beam
,” Phys. Rev. Lett.
30
, 60
–63
(1973
).13.
M.
Corti
and V.
Degiorgio
, “Third-order intensity correlations in laser light
,” Opt. Commun.
11
, 1
–4
(1974
).14.
M. J.
Stevens
, B.
Baek
, E. A.
Dauler
, A. J.
Kerman
, R. J.
Molnar
, S. A.
Hamilton
, K. K.
Berggren
, R. P.
Mirin
, and S. W.
Nam
, “High-order temporal coherences of chaotic and laser light
,” Opt. Express
18
, 1430
–1437
(2010
).15.
F. T.
Arecchi
and V.
Degiorgio
, Laser Handbook
, edited by F. T.
Arecchi
and E. O.
Schulz-Dubois
(North-Holland
, Amsterdam
, 1972
), Vol. 1
, p. 191
.16.
N. B.
Grosse
, T.
Symul
, M.
Stobinska
, T. C.
Ralph
, and P. K.
Lam
, “Measuring photon antibunching from continuous variable sideband squeezing
,” Phys. Rev. Lett.
98
, 153603
(2007
).17.
F.
Boitier
, A.
Godard
, N.
Dubreuil
, P.
Delaye
, C.
Fabre
, and E.
Rosencher
, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor
,” Nat. Commun.
2
, 425
(2011
).18.
V.
Degiorgio
, “Photon bunching in chaotic fields with uni-dimensional probability density
,” Europhys. Lett.
98
, 44007
(2012
).19.
See, in particular, Chapter 9 in Ref. 5.
20.
H. J.
Carmichael
and D. F.
Walls
, “A quantum-mechanical master equation treatment of the dynamical Stark effect
,” J. Phys. B
9
, 1199
–1219
(1976
).21.
H. J.
Kimble
, M.
Dagenais
, and L.
Mandel
, “Photon antibunching in resonance fluorescence
,” Phys. Rev. Lett.
39
, 691
–695
(1977
).22.
G. A.
Steudle
, S.
Schietinger
, D.
Höckel
, S. N.
Dorenbos
, I. E.
Sadeh
, V.
Zwiller
, and O.
Benson
, “Measuring the quantum nature of light with a single source and a single detector
,” Phys. Rev. A
86
, 053814
(2012
).23.
J. J.
Thorn
, M. S.
Neel
, V. W.
Donato
, G. S.
Bergreen
, R. E.
Davis
, and M.
Beck
, “Observing the quantum behavior of light in an undergraduate laboratory
,” Am. J. Phys.
72
, 1210
–1219
(2004
).24.
B. J.
Pearson
and D. P.
Jackson
, “A hands-on introduction to single photons and quantum mechanics for undergraduates
,” Am. J. Phys.
78
, 471
–484
(2010
).© 2013 American Association of Physics Teachers.
2013
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.