The shape function of a laminar liquid jet issuing from a circular orifice and falling vertically in air under gravity is analyzed. The diameter of the jet is observed to decrease with the axial distance from the nozzle. The governing equation for variation of the jet radius with the axial coordinate is derived from a modified Bernoulli's law, including the interfacial energy density and viscous losses. The analytical solution found in terms of dimensionless group numbers agrees well with experimental data.
REFERENCES
1.
J.
Eggers
and E.
Villermaux
, “Physics of liquid jets
,” Rep. Prog. Phys.
71
, 036601
–1
(2008
).2.
O. A.
Basaran
and R.
Suryo
, “The invisible jet
,” Nat. Phys.
3
, 679
–680
(2007
).3.
S.
Senchenko
and T.
Bohr
, “Shape and stability of a viscous thread
,” Phys. Rev. E
71
, 056301
–1
(2005
).4.
S. L.
Goren
and S.
Wonski
, “The shape of low-speed capillary jets of Newtonian liquid
,” J. Fluid Mech.
25
, 185
–191
(1966
).5.
T.
Kurabayashi
, “Atomization of liquids by means of a rotating nozzle
,” Trans. Jpn. Soc. Mech. Eng.
25
(160
), 1266
–1273
(1959
).6.
J. N.
Anno
, The Mechanics of Liquid Jets
(Lexington Books D.C. Heath and Company
, Toronto
, 1977
).7.
J. L.
Duda
and J. S.
Vrentas
, “Fluid mechanics of laminar liquid jets
,” Chem. Eng. Sci.
22
, 855
–869
(1967
).8.
U. S.
Sauter
and H. W.
Buggisch
, “Stability of initially slow viscous jets driven by gravity
,” J. Fluid Mech.
533
, 237
–257
(2005
).9.
S.
Clarke
, “Two-dimensional flow under gravity in a jet of viscous liquid
,” J. Fluid Mech.
31
, 481
–500
(1968
).10.
J. M.
Montanero
, M. A.
Herrada
, C.
Ferrera
, E. J.
Vega
, and A. M.
Gañán-Calvo
. “On the validity of a universal solution for viscous capillary jets
,” Phys. Fluids
23
, 122103
–1
(2011
).11.
J. K.
Lee
and G. T.
Seo
, “The falling laminar jet of semi-dilute polymer solutions
,” Korean J. Chem. Eng.
12
, 273
–276
(1995
).12.
K.
Adachi
, K.
Tagashiva
, Y.
Banba
, H.
Tatsttmi
, H.
Machida
, and N.
Yoshioka
, “Steady laminar round jets of a viscous liquid falling vertically in the atmosphere
,” AIChE J.
36
, 738
–745
(1990
).13.
K.
Adachi
, “Laminar jets of a plane liquid sheet falling vertically in the atmosphere
,” J. Non-Newtonian Fluid Mech.
24
, 11
–30
(1987
).14.
J. L.
Weishbach
, Die Experimental-Hydraulik
(Engelehardt
, Freiburg
, 1855
), <http://www.onread.com/book/Die-Experimental-hydraulik>.15.
G. S.
Georgiou
, T. C.
Papanastasiou
, and J. O.
Wilkes
, “Laminar Newtonian jets at high Reynolds number and high surface tension
,” AIChE J.
34
, 1559
–1562
(1988
).16.
J. F.
Geer
and J. C.
Strikwerda
, “Vertical slender jets
,” J. Fluid Mech.
101
, 53
–63
(1980
).17.
J. S.
Vrentas
and C. M.
Vrentas
, “Inertia and surface tension effects in Newtonian liquid jets
,” Int. J. Multiphase Flow
8
, 559
–564
(1982
).18.
Y.
Zimmels
, “Use of interfacial energy density in a modified Bernoulli equation for characterization of spraying systems
,” Langmuir
11
, 2985
–2990
(1995
).19.
C. E.
Synolakis
and H. S.
Badeer
, “On combining the Bernoulli and Poiseuille equation—A plea to authors of college physics texts
,” Am. J. Phys.
57
, 1013
–1019
(1989
).20.
M. E.
Saleta
, D.
Tobia
, and S.
Gil
, “Experimental study of Bernoulli's equation with losses
,” Am. J. Phys.
73
, 598
–602
(2005
).21.
L. E.
Scriven
and R. I.
Pigford
, “Fluid dynamics and diffusion calculations for Laminar liquid jets
,” AIChE J.
5
, 397
–402
(1959
).22.
R. L.
Cerro
and L. E.
Scriven
, “Rapid free surface film flow. An integral approach
,” Ind. Eng. Chem. Fundam.
19
, 40
–50
(1980
).23.
G. N.
Kruzhilin
, “Analysis of turbulent motion of a liquid in a pipe using the dimensional theory
,” High Temp.
41
, 367
–371
(2003
).24.
Mathematica 7 (Wolfram Research, Inc., Champaign, IL, 2008). See supplementary material at http://dx.doi.org/10.1119/1.4819196 for the mathematica code and results.
© 2013 American Association of Physics Teachers.
2013
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.