We analyze a simple variant of the Lorentz pendulum in which the length is varied exponentially instead of uniformly as in the standard case. We establish quantitative criteria for the condition of adiabatic changes in both pendula and demonstrate their substantially different physical behavior with regard to adiabatic invariance.

1.
J. W. S.
Rayleigh
, “
On the pressure of vibrations
,”
Philos. Mag.
3
,
338
346
(
1902
).
2.
L.
Le Cornu
, “
Mémoire sur le pendule de longueur variable
,”
Acta Math.
19
,
201
249
(
1895
).
3.
La Theorie du Rayonnement et les Quanta
, edited by
P.
Langevin
and
M. D.
Broglie
(
Gauthier-Villars
,
Paris
,
1912
).
4.
L.
Navarro
and
E.
Pérez
, “
Paul Ehrenfest: The genesis of the adiabatic hypothesis, 1911–1914
,”
Arch. Hist. Exact Sci.
60
,
209
267
(
2006
).
5.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
(
Springer
,
New York
,
1978
).
6.
P.
Ehrenfest
, “
Adiabatische Invarianten und Quantentheorie
,”
Ann. Phys. (Berlin)
356
,
327
352
(
1916
).
7.
M.
Born
and
V.
Fock
, “
Beweis des Adiabatensatzes
,”
Z. Phys.
51
,
165
180
(
1928
).
8.
T.
Kato
, “
On the adiabatic theorem of quantum mechanics
,”
J. Phys. Soc. Jpn.
5
,
435
439
(
1950
).
9.
A.
Sommerfeld
,
Atombau und Specktrallinien
(
Vieweg
,
Braunschweig
,
1919
).
10.
M.
Born
,
Vorlesungen über Atommechanik
(
Springer
,
Berlin
,
1925
).
11.
M.
Jammer
,
The Conceptual Development of Quantum Mechanics
(
McGraw-Hill
,
New York
,
1966
).
12.
T.
Levi-Civita
, “
Drei Vorlesungen über adiabatische Invarianten
,”
Abh. Math. Sem. Hamburg
6
,
323
366
(
1928
).
13.
T.
Levi-Civita
, “
A general survey of the theory of adiabatic invariants
,”
J. Math. Phys.
13
,
18
40
(
1934
).
14.
K. J.
Whiteman
, “
Invariants and stability in classical mechanics
,”
Rep. Prog. Phys.
40
,
1033
1069
(
1977
).
15.
Geometric Phases in Physics
, edited by
A.
Shapere
and
F.
Wilczek
(
World Scientific
,
Singapore
,
1989
).
16.
R. Z.
Sagdeev
,
D. A.
Usikov
, and
G. M.
Zaslavsky
,
Nonlinear Physics: From the Pendulum to Turbulence and Chaos
(
Harwood
,
New York
,
1988
).
17.
P.
Lochak
and
C.
Meunier
,
Multiphase Averaging for Classical Systems. With Applications to Adiabatic Theorems
(
Springer
,
New York
,
1988
).
18.
J.
Oreg
,
F. T.
Hioe
, and
J. H.
Eberly
, “
Adiabatic following in multilevel systems
,”
Phys. Rev. A
29
,
690
697
(
1984
).
19.
U.
Gaubatz
,
P.
Rudecki
,
M.
Becker
,
S.
Schiemann
,
M.
Külz
, and
K.
Bergmann
, “
Population switching between vibrational levels in molecular beams
,”
Chem. Phys. Lett.
149
,
463
468
(
1988
).
20.
U.
Gaubatz
,
P.
Rudecki
,
S.
Schiemann
, and
K.
Bergmann
, “
Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results
,”
J. Chem. Phys.
92
,
5363
5376
(
1990
).
21.
S.
Schiemann
,
A.
Kuhn
,
S.
Steuerwald
, and
K.
Bergmann
, “
Efficient coherent population transfer in NO molecules using pulsed lasers
,”
Phys. Rev. Lett.
71
,
3637
3640
(
1993
).
22.
P.
Pillet
,
C.
Valentin
,
R. L.
Yuan
, and
J.
Yu
, “
Adiabatic population transfer in a multilevel system
,”
Phys. Rev. A
48
,
845
848
(
1993
).
23.
P.
Král
,
I.
Thanopulos
, and
M.
Shapiro
, “
Colloquium: Coherently controlled adiabatic passage
,”
Rev. Mod. Phys.
79
,
53
77
(
2007
).
24.
E.
Farhi
,
J.
Goldstone
,
S.
Gutmann
, and
M.
Sipser
, “
Quantum computation by adiabatic evolution
,” e-print arXiv quant-ph/0001106.
25.
E.
Farhi
,
J.
Goldstone
,
S.
Gutmann
,
J.
Lapan
,
A.
Lundgren
, and
D.
Preda
, “
A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem
,”
Science
292
,
472
475
(
2001
).
26.
J.
Pachos
and
P.
Zanardi
, “
Quantum holonomies for quantum computing
,”
Int. J. Mod. Phys. B
15
,
1257
1286
(
2001
).
27.
L.
Parker
, “
Adiabatic invariance in simple harmonic motion
,”
Am. J. Phys.
39
,
24
27
(
1971
).
28.
M. G.
Calkin
, “
Adiabatic invariants for varying mass
,”
Am. J. Phys.
45
,
301
302
(
1977
).
29.
C.
Gignoux
and
F.
Brut
, “
Adiabatic invariance or scaling?
,”
Am. J. Phys.
57
,
422
428
(
1989
).
30.
F. S.
Crawford
, “
Elementary examples of adiabatic invariance
,”
Am. J. Phys.
58
,
337
344
(
1990
).
31.
J. L.
Anderson
, “
Multiple time scale methods for adiabatic systems
,”
Am. J. Phys.
60
,
923
927
(
1992
).
32.
A. C.
Aguiar Pinto
,
M. C.
Nemes
,
J. G.
Peixoto de Faria
, and
M. T.
Thomaz
, “
Comment on the adiabatic condition
,”
Am. J. Phys.
68
,
955
958
(
2000
).
33.
C. G.
Wells
and
S. T. C.
Siklos
, “
The adiabatic invariance of the action variable in classical dynamics
,”
Eur. J. Phys
28
,
105
112
(
2007
).
34.
B. W.
Shore
,
M. V.
Gromovyy
,
L. P.
Yatsenko
, and
V. I.
Romanenko
, “
Simple mechanical analogs of rapid adiabatic passage in atomic physics
,”
Am. J. Phys.
77
,
1183
1194
(
2009
).
35.
A. C.
Lobo
,
R. A.
Ribeiro
,
C.
de Assis Ribeiro
, and
P. R.
Dieguez
, “
Geometry of the adiabatic theorem
,”
Eur. J. Phys
33
,
1063
1072
(
2012
).
36.
K.-P.
Marzlin
and
B. C.
Sanders
, “
Inconsistency in the application of the adiabatic theorem
,”
Phys. Rev. Lett.
93
,
160408
(
2004
).
37.
M. S.
Sarandy
,
L.-A.
Wu
, and
D.
Lidar
, “
Consistency of the adiabatic theorem
,”
Quantum Inf. Process.
3
,
331
349
(
2004
).
38.
J.
Du
,
L.
Hu
,
Y.
Wang
,
J.
Wu
,
M.
Zhao
, and
D.
Suter
, “
Experimental study of the validity of quantitative conditions in the quantum adiabatic theorem
,”
Phys. Rev. Lett.
101
,
060403
(
2008
).
39.
M. H. S.
Amin
, “
Consistency of the adiabatic theorem
,”
Phys. Rev. Lett.
102
,
220401
(
2009
).
40.
T.
Wickramasinghe
and
R.
Ochoa
, “
Analysis of the linearity of half periods of the Lorentz pendulum
,”
Am. J. Phys.
73
,
442
445
(
2005
).
41.
A.
Kavanaugh
and
T.
Moe
, “The pit and the pendulum,” <http://online.redwoods.cc.ca.us/instruct/darnold/deproj/sp05/atrav/ThePitandThePendulum.pdf> (
2005
).
42.
G.
Krutkow
and
V.
Fock
, “
Über das Rayleighesche Pendel
,”
Z. Phys.
13
,
195
202
(
1923
).
43.
R. M.
Kulsrud
, “
Adiabatic invariant of the harmonic oscillator
,”
Phys. Rev.
106
,
205
207
(
1957
).
44.
C. S.
Gardner
, “
Adiabatic invariants of periodic classical systems
,”
Phys. Rev.
115
,
791
794
(
1959
).
45.
M.
Kruskal
, “
Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic
,”
J. Math. Phys.
3
,
806
828
(
1962
).
46.
J. E.
Littlewood
, “
Lorentz's pendulum problem
,”
Ann. Phys.
21
,
233
242
(
1963
).
47.
M. N.
Brearley
, “
The simple pendulum with uniformly changing string length
,”
Proc. Edin. Math. Soc.
15
,
61
66
(
1966
).
48.
A.
Werner
and
C. J.
Eliezer
, “
The lengthening pendulum
,”
J. Aust. Math. Soc.
9
,
331
336
(
1969
).
49.
D. K.
Ross
, “
The behaviour of a simple pendulum with uniformly shortening string length
,”
Int. J. Nonlin. Mech.
14
,
175
182
(
1979
).
50.
H.
Goldstein
,
Classical Mechanics
, 2nd ed. (
Addison-Wesley
,
Reading, MA
,
1980
).
51.
J. V.
José
and
E. J.
Saletan
,
Classical Dynamics: A Contemporary Approach
(
Cambridge U.P.
,
Cambridge
,
1998
).
52.
N. W.
McLachlan
,
Bessel Functions for Engineers
(
Oxford U.P.
,
Oxford
,
1955
).
53.
C.
Andrade
,
The Structure of the Atom
(
Harcourt
,
New York
,
1962
).
54.
E.
Kamke
,
Differentialgleichungen: Lösungsmethoden und Lösungen
, Vol. 1 (
Chelsea
,
New York
,
1974
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.