We present a simple treatment of the phenomenon of spontaneous parametric downconversion consisting of the coherent scattering of a single pump photon into an entangled photon pair inside a nonlinear crystal. The energy and momentum entanglement of the quantum state of the generated twin photons are seen as a consequence of the fundamental indistinguishability of the time and the position in which the photon pair is created inside the crystal. We also discuss some consequences of photon entanglement.

1.
J. G.
Rarity
,
P. R.
Tapster
,
E.
Jakeman
,
T.
Larchuk
,
R. A.
Campos
,
M. C.
Teich
, and
B. E. A.
Saleh
, “
Two-photon interference in a Mach-Zehnder interferometer
,”
Phys. Rev. Lett.
65
,
1348
1351
(
1990
).
2.
J. C.
Howell
,
R. S.
Bennink
,
S. J.
Bentley
, and
R.
Boyd
, “
Realization of the Einstein-Podolsky-Rosen paradox using momentum and position-entangled photons from spontaneous parametric down conversion
,”
Phys. Rev. Lett.
92
,
210403
(
2004
).
3.
A.
Mair
,
A.
Vaziri
,
G.
Weihs
, and
A.
Zeilinger
, “
Entanglement of the orbital angular momentum states of photons
,”
Nature
412
,
313
316
(
2001
).
4.
P. G.
Kwiat
,
K.
Mattle
,
H.
Weinfurter
, and
A.
Zeilinger
, “
New high-intensity source of polarization-entangled photon pairs
,”
Phys. Rev. Lett.
75
,
4337
4341
(
1995
).
5.
A.
Peres
,
Quantum Theory: Concepts and Methods
(
Kluwer Academic
,
New York
,
2002
).
6.
N. D.
Mermim
, “
Is the moon there when nobody looks? Reality and the quantum theory
,”
Phys. Today
38
(4),
38
47
(
1985
).
7.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge U.P.
,
Cambridge
,
2000
).
8.
P. L.
Saldanha
and
C. H.
Monken
, “
Interaction between light and matter: A photon wave function approach
,”
New J. Phys.
13
,
073015
(
2011
).
9.
I.
Bialynicki-Birula
, “
On the wave function of the photon
,”
Acta Phys. Pol. A
86
,
97
116
(
1994
).
10.
J. E.
Sipe
, “
Photon wave functions
,”
Phys. Rev. A
52
,
1875
1883
(
1995
).
11.
M. G.
Raymer
and
B. J.
Smith
, “
The Maxwell wave function of the photon
,”
Proc. SPIE
5866
,
293
297
(
2005
).
12.
I.
Bialynicki-Birula
, “
Photon as a quantum particle
,”
Acta Phys. Pol. B
37
,
935
946
(
2006
).
13.
R. P.
Feynman
,
Lectures on Physics
, 6th ed. (
Addison Wesley
,
Reading
,
1977
), Vol. 1, Chap. 31.
14.
M. B.
James
and
D. J.
Griffiths
, “
Why the speed of light is reduced in a transparent medium
,”
Am. J. Phys.
60
,
309
313
(
1992
).
15.

We could use spherical-wave modes to describe the propagation of photons 1 and 2 from (r′,t′) to (r1,t) and (r2,t) in Eq. (1). This would be more precise, but the plane-wave decomposition that we use here, in which all wavevectors appear with the same probability amplitude, leads to simpler calculations with essentially the same results.

16.

If the photon is not monochromatic, the change of representation is not so simple, as discussed in Refs. 9 and 10.

17.

It is important to stress that the form ℏk is not the only possibility for the momentum of a photon with wavevector k in a medium, as discussed in Refs. 30 and 31. There are many different ways of dividing the total momentum of an electromagnetic wave in a linear medium into electromagnetic and material parts, all of which are compatible with momentum conservation, and for each chosen division the photon momentum will have a different expression. The form ℏk is the simplest one for the present case, which is why we have used it.

18.
A.
Einstein
,
B.
Podolsky
, and
N.
Rosen
, “
Can quantum-mechanical description of physical reality be considered complete?
,”
Phys. Rev.
47
,
777
780
(
1935
).
19.
N.
Bohr
, “
Can quantum-mechanical description of physical reality be considered complete?
,”
Phys. Rev.
48
,
696
702
(
1935
).
20.
J. S.
Bell
, “
On the Einstein Podolsky Rosen paradox
,”
Physics
1
,
195
200
(
1964
).
21.
A.
Aspect
,
J.
Dalibard
, and
G.
Roger
,“
Experimental test of Bell's inequalities using time-varying analyzers
,”
Phys. Rev. Lett.
49
,
1804
1807
(
1982
).
22.
L.
Mandel
and
E.
Wolf
,
Optical Coherence and Quantum Optics
(
Cambridge
,
New York
,
1995
), Chap. 22.
23.
C. K.
Hong
and
L.
Mandel
, “
Theory of parametric frequency down conversion of light
,”
Phys. Rev. A
31
,
2409
2418
(
1985
).
24.
C. H.
Monken
,
P. H. S.
Ribeiro
, and
S.
Pádua
, “
Transfer of angular spectrum and image formation in spontaneous parametric down-conversion
,”
Phys. Rev. A
57
,
3123
3126
(
1998
).
25.
D.
Dehlinger
and
M. W.
Mitchell
, “
Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory
,”
Am. J. Phys.
70
,
903
910
(
2002
).
26.
E. J.
Galvez
,
C. H.
Holbrow
,
M. J.
Pysher
,
J. W.
Martin
,
N.
Courtemanche
,
L.
Heilig
, and
J.
Spencer
, “
Interference with correlated photons: Five quantum mechanics experiments for undergraduates
,”
Am. J. Phys.
73
,
127
140
(
2005
).
27.
J. A.
Carlson
,
M. D.
Olmstead
, and
M.
Beck
, “
Quantum mysteries tested: An experiment implementing Hardy's test of local realism
,”
Am. J. Phys.
74
,
180
186
(
2006
).
28.
B. J.
Pearson
and
D. P.
Jackson
, “
A hands-on introduction to single photons and quantum mechanics for undergraduates
,”
Am. J. Phys.
78
,
471
484
(
2010
).
29.
E. J.
Galvez
, “
Qubit quantum mechanics with correlated-photon experiments
,”
Am. J. Phys.
78
,
510
519
(
2010
).
30.
R. N. C.
Pfeifer
,
T. A.
Nieminen
,
N. R.
Heckenberg
,
H.
Rubinsztein-Dunlop
, “
Colloquium: Momentum of an electromagnetic wave in dielectric media
,”
Rev. Mod. Phys.
79
,
1197
1216
(
2007
).
31.
P. L.
Saldanha
, “
Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts
,”
Opt. Express
18
,
2258
2268
(
2010
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.