The evolution of spatially homogeneous and isotropic cosmological models containing a perfect fluid with equation of state p =  and a cosmological constant Λ is investigated for arbitrary combinations of w and Λ, using standard qualitative analysis borrowed from classical mechanics. This approach allows one to consider a large variety of situations, appreciating similarities and differences between models, without solving the Friedmann equation, and is suitable for an elementary course in cosmology.

1.
J. D.
Barrow
, “
Some topics in relativistic cosmology
,” in
Gravitation in Astrophysics, Cargèse 1986
, edited by
B.
Carter
and
J. B.
Hartle
(
Plenum
,
New York
,
1987
), pp.
239
291
.
2.
M. J. D.
Assad
and
J. A. S.
Lima
, “
General and unified solution for perfect fluid homogeneous and isotropic cosmological models
,”
Gen. Relativ. Gravit.
20
,
527
538
(
1988
).
3.
J. D.
Barrow
, “
Relativistic cosmology and the regularization of orbits
,”
Observatory
113
,
210
211
(
1993
).
4.
V.
Faraoni
, “
Solving for the dynamics of the universe
,”
Am. J. Phys.
67
,
732
734
(
1999
); E-print physics/9901006.
5.
J. A. S.
Lima
, “
Note on solving for the dynamics of the Universe
,”
Am. J. Phys.
69
,
1245
1247
(
2001
); E-print astro-ph/0109215.
6.
J. E.
Felten
and
R.
Isaacman
, “
Scale factors R(t) and critical values of the cosmological constant Λ in Friedmann universes
,”
Rev. Mod. Phys.
58
,
689
698
(
1986
).
7.
R.
d’Inverno
,
Introducing Einstein’s Relativity
(
Clarendon Press
,
Oxford
,
1992
), pp.
331
341
.
8.
A.
Harvey
, “
Cosmological models
,”
Am. J. Phys.
61
,
901
906
(
1993
).
9.
S. M.
Carroll
, “
The cosmological constant
,”
Living Rev. Relativ.
4
,
1
(
2001
); E-print astro-ph/0004075.
10.
J.
Earman
, “
Lambda: The constant that refuses to die
,”
Arch. Hist. Exact Sci.
55
,
189
220
(
2001
).
11.
T.
Padmanabhan
, “
Cosmological constant—the weight of the vacuum
,”
Phys. Rep.
380
,
235
320
(
2003
); E-print hep-th/0212290.
12.
E. V.
Linder
, “
Resource Letter DEAU-1: Dark energy and the accelerating universe
,”
Am. J. Phys.
76
,
197
204
(
2008
); E-print 0705.4102 [astro-ph].
13.
A.
Harvey
, “
Dark energy and the cosmological constant: a brief introduction
,”
Eur. J. Phys.
30
,
877
889
(
2009
).
14.
C. P.
Burgess
, “
Quantum gravity in everyday life: General relativity as an effective field theory
,”
Living Rev. Relativ.
7
,
5
(
2004
); E-print gr-qc/0311082
15.
S.
Cacciatori
,
V.
Gorini
, and
A.
Kamenshchik
, “
Special relativity in the 21st century
,”
Annalen Phys.
17
,
728
768
(
2008
); E-print 0807.3009 [gr-qc].
16.
R. J.
Adler
,
B.
Casey
, and
O. C.
Jacob
, “
Vacuum catastrophe: An elementary exposition of the cosmological constant problem
,”
Am. J. Phys.
63
,
620
626
(
1995
).
17.
R. J.
Nemiroff
and
B.
Patla
, “
Adventures in Friedmann cosmology: A detailed expansion of the cosmological Friedmann equations
,”
Am. J. Phys.
76
,
265
276
(
2008
); E-print astro-ph/0703739.
18.
G. F. R.
Ellis
, “
Standard and inflationary cosmologies
,” in
Gravitation. Proceedings of the Banff Summer Research Institute on Gravitation, August 1990
, edited by
R. B.
Mann
and
P.
Wesson
(
World Scientific
,
Singapore
,
1991
), pp.
3
53
.
19.
J.-P.
Uzan
and
R.
Lehoucq
, “
A dynamical study of the Friedmann equations
,”
Eur. J. Phys.
22
,
371
384
(
2001
); E-print physics/0108066.
20.
A. A.
Coley
,
Dynamical Systems and Cosmology
(
Kluwer
,
Dordrecht
,
2003
).
21.
J.
Wainwright
and
G. F. R.
Ellis
, editors,
Dynamical Systems in Cosmology
(
Cambridge U. P.
,
Cambridge
,
2005
).
22.

The treatment in Ref. 19 does not allow one to obtain straightforwardly the behavior of the scale factor, which is probably what most students are interested in.

23.
C. J.
Clarke
and
R. F.
Carswell
,
Principles of Astrophysical Fluid Dynamics
(
Cambridge U.P.
,
Cambridge
,
2007
).
24.
J. A. S.
Lima
,
A. M.
Moreira
, and
J.
Santos
, “
Particle-like description for FRW cosmologies
,”
Gen. Relativ. Gravit.
30
,
425
434
(
1998
).
25.
M.
Szydłowski
and
W.
Czaja
, “
Particlelike description in quintessential cosmology
,”
Phys. Rev. D
69
,
083518
(
2004
); E-print gr-qc/0305033.
26.
M.
Szydłowski
, “
Cosmological zoo—accelerating models with dark energy
,” JCAP 09 007 (
2007
); E-print astro-ph/0610250.
27.
E. V.
Linder
, “
Mapping the cosmological expansion
,”
Rep. Prog. Phys.
71
,
056901
(
2008
); E-print 0801.2968 [astro-ph].
28.

Indices a and b denote tensor components in four-dimensional spacetime, gab is the metric, and ua = gabub, where ua is the fluid four-velocity.

29.
J. A. S.
Lima
and
A.
Maia
, Jr.
, “
Thermodynamic properties of γ fluids and the quantum vacuum
,”
Phys. Rev. D
52
,
5628
5635
(
1995
); E-print gr-qc/9505052.
30.

Of course, the property ρ = const also follows, when w = –1, from Eq. (4), to which the condition bTab=0 reduces for the FLRW metric given by Eq. (2).

31.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
(
Springer
,
New York
,
1989
).
32.
J. B.
Marion
and
S. T.
Thornton
,
Classical Dynamics of Particles and Systems
, 4th ed. (
Brooks/Cole
,
Pacific Grove
,
1995
).
33.
This conclusion follows from Eq. (16), which is derived from classical general relativity. It has been argued recently that, within a quantum treatment of cosmology based on the Wheeler-DeWitt equation, one can have accelerated expansion in a semiclassical regime for large spatial volumes, even though the fundamental theory contains a negative cosmological constant. See
J. B.
Hartle
,
S. W.
Hawking
, and
T.
Hertog
, “
Accelerated expansion from negative Λ
,” e-print arXiv:1205.3807 [hep-th].
34.
A.
Einstein
, “
Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie
,”
Sitzungsber. Preuss. Akad. Wiss.
1
,
142
152
(
1917
);
A.
Einstein
, “
Cosmological considerations on the general theory of relativity
,” in
The Principle of Relativity
, edited by
A.
Sommerfeld
,
W.
Perrett
, and
G. B.
Jeffery
(
Dover
,
New York
,
1952
), pp.
177
188
(in English).
35.
G.
Lemaître
, “
Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques
,”
Ann. Soc. Sci. Bruxelles A
47
,
49
59
(
1927
);
G.
Lemaître
, “
A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulæ
,”
Mon. Not. R. Astron. Soc.
91
,
483
490
(
1931
) (in English).
36.
A. S.
Eddington
, “
On the instability of Einstein’s spherical world
,”
Mon. Not. R. Astron. Soc.
90
,
668
678
(
1930
).
37.
A. S.
Eddington
,
The Expanding Universe
(
Cambridge U.P.
,
Cambridge
,
1933
).
38.
J. D.
Barrow
,
G. F. R.
Ellis
,
R.
Maartens
, and
C. G.
Tsagas
, “
On the stability of the Einstein static universe
,”
Class. Quantum Grav.
20
,
L155
L164
(
2003
); E-print gr-qc/0302094.
39.
G. E.
Lemaître
, “
The cosmological constant
,”
in Albert Einstein: Philosopher-Scientist
, edited by
P. A.
Schilpp
(
Open Court
,
La Salle
,
1949
), pp.
439
456
.
40.
R. R.
Caldwell
, “
A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state
,”
Phys. Lett. B
545
,
23
29
(
2002
); E-print astro-ph/9908168.
41.
R. R.
Caldwell
,
M.
Kamionkowski
, and
N. N.
Weinberg
, “
Phantom energy: Dark energy with w<1 causes a cosmic doomsday
,”
Phys. Rev. Lett.
91
,
071301
(
2003
); E-print astro-ph/0302506.
42.
A.
Liddle
,
An Introduction to Modern Cosmology
, 2nd ed. (
Wiley
,
Chichester
,
2003
), Chapter 8.
43.
P. H.
Frampton
,
K. J.
Ludwick
, and
R. J.
Scherrer
, “
The little rip
,”
Phys. Rev. D
84
,
063003
(
2011
); E-print 1106.4996 [astro-ph.CO].
44.
A.
Yu. Kamenshchik
,
U.
Moschella
, and
V.
Pasquier
, “
An alternative to quintessence
,”
Phys. Lett. B
511
,
265
268
(
2001
); E-print gr-qc/0103004.
45.
M. C.
Bento
,
O.
Bertolami
, and
A. A.
Sen
, “
Generalized Chaplygin gas, accelerated expansion and dark-energy-matter unification
,”
Phys. Rev. D
66
,
043507
(
2002
); E-print gr-qc/0202064.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.