We introduce a pedagogical discussion on Bohmian mechanics and its physical implications in connection with the important role played by the quantum phase in the dynamics of quantum processes. In particular, we focus on phenomena such as quantum coherence, diffraction, and interference, due to their historical relevance in the development of the quantum theory and their key role in a myriad of fundamental and applied problems of current interest.

1.
L. E.
Ballentine
,
Quantum Mechanics. A Modern Development
(
World Scientific
,
Singapore
,
1998
).
2.
W. H.
Zurek
and
J. A.
Wheeler
,
Quantum Theory of Measurement
(
Princeton U.P.
,
Princeton, NJ
,
1983
).
3.
J.
von Neumann
,
Mathematische Grundlagen der Quantenmechanik
(
Springer
,
Berlin
,
1932
).
4.
D.
Bohm
, “
A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I
,”
Phys. Rev.
85
,
166
179
(
1952
)
D.
Bohm
, and “
A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. II
,”
Phys. Rev.
85
,
180
193
(
1952
).
5.
D.
Bohm
and
B. J.
Hiley
,
The Undivided Universe
(
Routledge
,
New York
,
1993
).
6.
P. R.
Holland
,
The Quantum Theory of Motion
(
Cambridge U.P.
,
Cambridge
,
1993
).
7.
D.
Dürr
,
Bohmsche Mechanik als Grundlage der Quantenmechanik
(
Springer
,
Berlin
,
2001
)
and
D.
Dürr
and
S.
Teufel
,
Bohmian Mechanics. The Physics and Mathematics of Quantum Theory
(
Springer
,
Berlin
,
2009
).
8.
Bohmian mechanics is also referred to in the literature as de Broglie-Bohm theory, pilot-wave theory, and de Broglie-Bohm-Madelung-Takabayasi theory, as well as the so-called causal, ontological, or hydrodynamical interpretation of quantum mechanics. Here, we have used the term Bohmian mechanics, in order to highlight more explicitly the mechanical explanation it provides of quantum phenomena, just like classical mechanics does of classical phenomena.
9.
E.
Madelung
, “
Quantentheorie in hydrodynamischer Form
,”
Z. Physik
40
,
322
326
(
1926
).
10.
S.
Goldstein
, “
Quantum theory without observers—Part I
,”
Phys. Today
51
(
3
),
42
46
(
1998
) and
S.
Goldstein
, “
Quantum theory without observers—Part II
,”
Phys. Today
51
(
4
),
38
42
(
1998
).
11.
R. E.
Wyatt
,
Quantum Dynamics with Trajectories
(
Springer
,
Berlin
,
2006
).
12.
Quantum Trajectories
, edited by
P. K.
Chattaraj
(
CRC Taylor and Francis
,
New York
,
2010
).
13.
Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology
, edited by
X.
Oriols
and
J.
Mompart
(
Pan Standford Publishing
,
Singapore
,
2012
).
14.
A. S.
Sanz
and
S.
Miret-Artés
,
A Trajectory Description of Quantum Processes. I. Fundamentals
, Lecture Notes in Physics (
Springer
,
Berlin
,
2012
), Vol.
850
and
A. S.
Sanz
and
S.
Miret-Artés
,
A Trajectory Description of Quantum Processes. II. Applications
, Lecture Notes in Physics (
Springer
,
Berlin
) (to be published).
15.
J. S.
Bell
,
Speakable and Unspeakable in Quantum Mechanics
(
Cambridge U.P.
,
Cambridge
,
1987
).
16.
J.
Bernstein
, “
More about Bohm’s quantum
,”
Am. J. Phys.
79
,
601
606
(
2011
).
17.
L. D.
Carr
and
S. B.
McKagan
, “
Graduate quantum mechanics reform
,”
Am. J. Phys.
77
,
308
319
(
2009
).
18.
K.
Hornberger
,
S.
Gerlich
,
P.
Haslinger
,
S.
Nimmrichter
, and
M.
Arndt
, “
Colloquium: Quantum interference of clusters and molecules
,”
Rev. Mod. Phys.
84
,
157
173
(
2012
) and
T.
Juffmann
,
S.
Nimmrichter
,
M.
Arndt
,
H.
Gleiter
, and
K.
Hornberger
, “
New prospects for de Broglie interferometry: Grating diffraction in the far-field and Poisson’s spot in the near-field
,”
Found. Phys.
42
,
98
110
(
2012
).
19.
A. D.
Cronin
,
J.
Schmiedmayer
, and
D. E.
Pritchard
, “
Optics and interferometry with atoms and molecules
,”
Rev. Mod. Phys.
81
,
1051
1129
(
2009
).
20.
J. S.
Bell
, “
On the Einstein-Podolsky-Rosen Paradox
,”
Physics
1
,
195
200
(
1964
) and
J. S.
Bell
, “
On the problem of hidden variables in quantum mechanics
,”
Rev. Mod. Phys.
38
,
447
452
(
1966
).
21.
A.
Aspect
,
P.
Grangier
, and
G.
Roger
, “
Experimental tests of realistic local theories via Bell’s theorem
,”
Phys. Rev. Lett.
47
,
460
463
(
1981
), and
A.
Aspect
,
P.
Grangier
, and
G.
Roger
, “
Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell’s inequalities
,”
Phys. Rev. Lett.
49
,
91
94
(
1982
) and
A.
Aspect
,
J.
Dalibard
, and
G.
Roger
, “
Experimental test of Bell’s inequalities using time-varying analyzers
,”
Phys. Rev. Lett.
49
,
1804
1807
(
1982
).
22.
A. S.
Sanz
,
F.
Borondo
, and
S.
Miret-Artés
, “
Causal trajectories description of atom diffraction by surfaces
,”
Phys. Rev. B
61
,
7743
7751
(
2000
) and
A. S.
Sanz
,
F.
Borondo
, and
S.
Miret-Artés
, “
On the classical limit in atom-surface diffraction
,”
Europhys. Lett.
55
,
303
309
(
2001
).
23.
C.
Lopreore
and
R. E.
Wyatt
, “
Quantum wave packet dynamics with trajectories
,”
Phys. Rev. Lett.
82
,
5190
5193
(
1999
).
24.
I.
Bialynicki-Birula
and
Z.
Bialynicka-Birula
, “
Magnetic monopoles in the hydrodynamic formulation of quantum mechanics
,”
Phys. Rev. D
3
,
2410
2412
(
1971
) and
I.
Bialynicki-Birula
,
M.
Cieplak
, and
J.
Kaminski
,
Theory of Quanta
(
Oxford U.P.
,
Oxford
,
1992
).
25.
J. O.
Hirschfelder
,
A. C.
Christoph
, and
W. E.
Palke
, “
Quantum mechanical streamlines. I. Square potential barrier
,”
J. Chem. Phys.
61
,
5435
5455
(
1974
), and
J. O.
Hirschfelder
,
C. J.
Goebel
, and
L. W.
Bruch
, Quantized vortices around wavefunction nodes. II,
J. Chem. Phys.
61
(
1974
)
5456
5459
, and
J. O.
Hirschfelder
and
K. T.
Tang
, Quantum mechanical streamlines. III. Idealized reactive atom-diatomic molecule collision,
J. Chem. Phys.
64
760
785
(
1976
), and
J. O.
Hirschfelder
and
K. T.
Tang
, “
Quantum mechanical streamlines. IV. Collision of two sphere with square potential wells or barriers
,”
J. Chem. Phys.
65
470
486
(
1976
).
26.
B.-G.
Englert
,
M. O.
Scully
,
G.
Süssmann
, and
H.
Walther
, “
Surrealistic Bohm trajectories
,”
Z. Naturforsch. A
47
,
1175
1186
(
1993
), and
D.
Dürr
,
W.
Fusseder
,
S.
Goldstein
, and
N.
Zanghì
, “
Comment on ‘Surrealistic Bohm trajectories’
,”
Z. Naturforsch. A
48
,
1261
1262
(
1993
), and
B.-G.
Englert
,
M. O.
Scully
,
G.
Süssmann
, and
H.
Walther
, “
Reply to comment on ‘Surrealistic Bohm trajectories’
,”
Z. Naturforsch. A
48
,
1263
1264
(
1993
), and
M. O.
Scully
, “
Do Bohm trajectories always provide a trustworthy physical picture of particle motion?
,”
Phys. Scr.
T76
,
41
46
(
1998
).
27.
J. A.
Wheeler
, “
The Past and the Delayed-Choice Double-Slit Experiment
,” in
Mathematical Foundations of Quantum Theory
, edited by
A. R.
Marlow
(
Academic
,
New York
,
1978
), pp.
9
47
and
W. A.
Miller
and
J. A.
Wheeler
, “
Delayed-choice experiments and Bohrs elementary quantum phenomenon
,” in
Proceedings of the International Symposium on Foundations of Quantum Mechanics
, edited by
S.
Kamefuchi
 et al., (
Physical Society of Japan
,
Tokio
,
1978
), pp.
140
151
.
28.
B. J.
Hiley
and
R. E.
Callaghan
, “
Delayed-choice experiments and the Bohm approach
,”
Phys. Scr.
74
,
336
348
(
2006
).
29.
A.
Tonomura
,
J.
Endo
,
T.
Matsuda
,
T.
Kawasaki
, and
Ezawa
, “
Demonstration of single-electron buildup of an interference pattern
,”
Am. J. Phys.
57
,
117
120
(
1989
).
30.
F.
Shimizu
,
K.
Shimizu
, and
H.
Takuma
, “
Double-slit interference with ultracold metastable neon atoms
,”
Phys. Rev. A
46
,
R17
R20
(
1992
).
31.
A. S.
Sanz
and
S.
Miret-Artés
, “
Aspects of nonlocality from a quantum trajectory perspective: A WKB approach to Bohmian mechanics
,”
Chem. Phys. Lett.
445
,
350
354
(
2007
).
32.
M.
Born
and
E.
Wolf
,
Principles of Optics
, 7th ed. (
Pergamon Press
,
Oxford
,
2002
).
33.
A. S.
Sanz
and
S.
Miret-Artés
, “
A causal look into the quantum Talbot effect
,”
J. Chem. Phys.
126
,
234106
1
(
2007
).
34.
This point can also be seen within the quantum Zeno effect context in:
M.
de Gosson
and
B. J.
Hiley
, “
Zeno paradox for Bohmian trajectories: The unfolding of the metatron
,” e-print arXiv:1010.2622v2.
35.
M. V.
Berry
, “
Quantum fractals in boxes
,”
J. Phys. A
29
,
6617
6629
(
1996
).
36.
A. S.
Sanz
, “
A Bohmian approach to quantum fractals
,”
J. Phys. A
38
,
6037
6049
(
2005
).
37.
A. S.
Sanz
and
S.
Miret-Artés
, “
A trajectory-based understanding of quantum interference
,”
J. Phys. A
41
,
435303
1
(
2008
).
38.
C.
Dewdney
and
B. J.
Hiley
, “
A quantum potential description of one-dimensional time-dependent scattering from square barriers
,”
Found. Phys.
12
,
27
48
(
1982
).
39.
A. S.
Sanz
,
F.
Borondo
, and
S.
Miret-Artés
, “
Particle diffraction studied using quantum trajectories
,”
J. Phys.: Condens. Matter
14
,
6109
6145
(
2002
).
40.
A. S.
Sanz
,
F.
Borondo
, and
S.
Miret-Artés
, “
Quantum trajectories in atomsurface scattering with single adsorbates: The role of quantum vortices
,”
J. Chem. Phys.
120
,
8794
8806
(
2004
) and
[PubMed]
A. S.
Sanz
,
F.
Borondo
, and
S.
Miret-Artés
, “
Role of quantum vortices in atomic scattering from single adsorbates
,”
Phys. Rev. B
69
,
115413(1–5)
(
2004
).
41.
A. S.
Sanz
,
X.
Giménez
,
J. M.
Bofill
, and
S.
Miret-Artés
, “
Understanding chemical reactions within a generalized HamiltonJacobi framework
,”
Chem. Phys. Lett.
478
,
89
96
(
2009
and
A. S.
Sanz
,
X.
Giménez
,
J. M.
Bofill
, and
S.
Miret-Artés
, “
Erratum
,”
Chem. Phys. Lett.
488
,
235
236
(
2010
).
42.
M.
Davidović
,
A. S.
Sanz
,
D.
Arsenović
,
M.
Božić
, and
S.
Miret-Artés
, “
Electromagnetic energy flow lines as possible paths of photons
,”
Phys. Scr.
T135
,
014009
1
(
2009
) and
A. S.
Sanz
,
M.
Davidović
,
M.
Božić
, and
S.
Miret-Artés
, “
Understanding interference experiments with polarized light through photon trajectories
,”
Ann. Phys.
325
,
763
784
(
2010
).
43.
W.
Ehrenberg
and
R. E.
Siday
, “
The refractive index in electron optics and the principles of dynamics
,”
Proc. Phys. Soc. B
62
,
8
21
(
1949
), and
Y.
Aharonov
and
D.
Bohm
, “
Significance of electromagnetic potentials in the quantum theory
,”
Phys. Rev.
115
,
485
491
(
1959
), and
Y.
Aharonov
and
D.
Bohm
, “
Further considerations on electromagnetic potentials in the quantum theory
,”
Phys. Rev.
123
,
1511
1524
(
1961
).
44.
B. D.
Josephson
, “
The discovery of tunnelling supercurrents
,”
Rev. Mod. Phys.
46
,
251
254
(
1974
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.