We introduce a pedagogical discussion on Bohmian mechanics and its physical implications in connection with the important role played by the quantum phase in the dynamics of quantum processes. In particular, we focus on phenomena such as quantum coherence, diffraction, and interference, due to their historical relevance in the development of the quantum theory and their key role in a myriad of fundamental and applied problems of current interest.
REFERENCES
1.
L. E.
Ballentine
, Quantum Mechanics. A Modern Development
(World Scientific
, Singapore
, 1998
).2.
W. H.
Zurek
and J. A.
Wheeler
, Quantum Theory of Measurement
(Princeton U.P.
, Princeton, NJ
, 1983
).3.
J.
von Neumann
, Mathematische Grundlagen der Quantenmechanik
(Springer
, Berlin
, 1932
).4.
D.
Bohm
, “A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I
,” Phys. Rev.
85
, 166
–179
(1952
)D.
Bohm
, and “A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. II
,” Phys. Rev.
85
, 180
–193
(1952
).5.
6.
P. R.
Holland
, The Quantum Theory of Motion
(Cambridge U.P.
, Cambridge
, 1993
).7.
D.
Dürr
, Bohmsche Mechanik als Grundlage der Quantenmechanik
(Springer
, Berlin
, 2001
)and
D.
Dürr
and S.
Teufel
, Bohmian Mechanics. The Physics and Mathematics of Quantum Theory
(Springer
, Berlin
, 2009
).8.
Bohmian mechanics is also referred to in the literature as de Broglie-Bohm theory, pilot-wave theory, and de Broglie-Bohm-Madelung-Takabayasi theory, as well as the so-called causal, ontological, or hydrodynamical interpretation of quantum mechanics. Here, we have used the term Bohmian mechanics, in order to highlight more explicitly the mechanical explanation it provides of quantum phenomena, just like classical mechanics does of classical phenomena.
9.
E.
Madelung
, “Quantentheorie in hydrodynamischer Form
,” Z. Physik
40
, 322
–326
(1926
).10.
S.
Goldstein
, “Quantum theory without observers—Part I
,” Phys. Today
51
(3
), 42
–46
(1998
) and S.
Goldstein
, “Quantum theory without observers—Part II
,” Phys. Today
51
(4
), 38
–42
(1998
).11.
12.
Quantum Trajectories
, edited by P. K.
Chattaraj
(CRC Taylor and Francis
, New York
, 2010
).13.
Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology
, edited by X.
Oriols
and J.
Mompart
(Pan Standford Publishing
, Singapore
, 2012
).14.
A. S.
Sanz
and S.
Miret-Artés
, A Trajectory Description of Quantum Processes. I. Fundamentals
, Lecture Notes in Physics (Springer
, Berlin
, 2012
), Vol. 850
andA. S.
Sanz
and S.
Miret-Artés
, A Trajectory Description of Quantum Processes. II. Applications
, Lecture Notes in Physics (Springer
, Berlin
) (to be published).15.
J. S.
Bell
, Speakable and Unspeakable in Quantum Mechanics
(Cambridge U.P.
, Cambridge
, 1987
).16.
J.
Bernstein
, “More about Bohm’s quantum
,” Am. J. Phys.
79
, 601
–606
(2011
).17.
L. D.
Carr
and S. B.
McKagan
, “Graduate quantum mechanics reform
,” Am. J. Phys.
77
, 308
–319
(2009
).18.
K.
Hornberger
, S.
Gerlich
, P.
Haslinger
, S.
Nimmrichter
, and M.
Arndt
, “Colloquium: Quantum interference of clusters and molecules
,” Rev. Mod. Phys.
84
, 157
–173
(2012
) and T.
Juffmann
, S.
Nimmrichter
, M.
Arndt
, H.
Gleiter
, and K.
Hornberger
, “New prospects for de Broglie interferometry: Grating diffraction in the far-field and Poisson’s spot in the near-field
,” Found. Phys.
42
, 98
–110
(2012
).19.
A. D.
Cronin
, J.
Schmiedmayer
, and D. E.
Pritchard
, “Optics and interferometry with atoms and molecules
,” Rev. Mod. Phys.
81
, 1051
–1129
(2009
).20.
J. S.
Bell
, “On the Einstein-Podolsky-Rosen Paradox
,” Physics
1
, 195
–200
(1964
) andJ. S.
Bell
, “On the problem of hidden variables in quantum mechanics
,” Rev. Mod. Phys.
38
, 447
–452
(1966
).21.
A.
Aspect
, P.
Grangier
, and G.
Roger
, “Experimental tests of realistic local theories via Bell’s theorem
,” Phys. Rev. Lett.
47
, 460
–463
(1981
), and A.
Aspect
, P.
Grangier
, and G.
Roger
, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell’s inequalities
,” Phys. Rev. Lett.
49
, 91
–94
(1982
) and A.
Aspect
, J.
Dalibard
, and G.
Roger
, “Experimental test of Bell’s inequalities using time-varying analyzers
,” Phys. Rev. Lett.
49
, 1804
–1807
(1982
).22.
A. S.
Sanz
, F.
Borondo
, and S.
Miret-Artés
, “Causal trajectories description of atom diffraction by surfaces
,” Phys. Rev. B
61
, 7743
–7751
(2000
) and A. S.
Sanz
, F.
Borondo
, and S.
Miret-Artés
, “On the classical limit in atom-surface diffraction
,” Europhys. Lett.
55
, 303
–309
(2001
).23.
C.
Lopreore
and R. E.
Wyatt
, “Quantum wave packet dynamics with trajectories
,” Phys. Rev. Lett.
82
, 5190
–5193
(1999
).24.
I.
Bialynicki-Birula
and Z.
Bialynicka-Birula
, “Magnetic monopoles in the hydrodynamic formulation of quantum mechanics
,” Phys. Rev. D
3
, 2410
–2412
(1971
) and I.
Bialynicki-Birula
, M.
Cieplak
, and J.
Kaminski
, Theory of Quanta
(Oxford U.P.
, Oxford
, 1992
).25.
J. O.
Hirschfelder
, A. C.
Christoph
, and W. E.
Palke
, “Quantum mechanical streamlines. I. Square potential barrier
,” J. Chem. Phys.
61
, 5435
–5455
(1974
), and J. O.
Hirschfelder
, C. J.
Goebel
, and L. W.
Bruch
, Quantized vortices around wavefunction nodes. II, J. Chem. Phys.
61
(1974
) 5456
–5459
, and J. O.
Hirschfelder
and K. T.
Tang
, Quantum mechanical streamlines. III. Idealized reactive atom-diatomic molecule collision, J. Chem. Phys.
64
760
–785
(1976
), andJ. O.
Hirschfelder
and K. T.
Tang
, “Quantum mechanical streamlines. IV. Collision of two sphere with square potential wells or barriers
,” J. Chem. Phys.
65
470
–486
(1976
).26.
B.-G.
Englert
, M. O.
Scully
, G.
Süssmann
, and H.
Walther
, “Surrealistic Bohm trajectories
,” Z. Naturforsch. A
47
, 1175
–1186
(1993
), andD.
Dürr
, W.
Fusseder
, S.
Goldstein
, and N.
Zanghì
, “Comment on ‘Surrealistic Bohm trajectories’
,” Z. Naturforsch. A
48
, 1261
–1262
(1993
), andB.-G.
Englert
, M. O.
Scully
, G.
Süssmann
, and H.
Walther
, “Reply to comment on ‘Surrealistic Bohm trajectories’
,” Z. Naturforsch. A
48
, 1263
–1264
(1993
), andM. O.
Scully
, “Do Bohm trajectories always provide a trustworthy physical picture of particle motion?
,” Phys. Scr.
T76
, 41
–46
(1998
).27.
J. A.
Wheeler
, “The Past and the Delayed-Choice Double-Slit Experiment
,” in Mathematical Foundations of Quantum Theory
, edited by A. R.
Marlow
(Academic
, New York
, 1978
), pp. 9
–47
andW. A.
Miller
and J. A.
Wheeler
, “Delayed-choice experiments and Bohrs elementary quantum phenomenon
,” in Proceedings of the International Symposium on Foundations of Quantum Mechanics
, edited by S.
Kamefuchi
et al., (Physical Society of Japan
, Tokio
, 1978
), pp. 140
–151
.28.
B. J.
Hiley
and R. E.
Callaghan
, “Delayed-choice experiments and the Bohm approach
,” Phys. Scr.
74
, 336
–348
(2006
).29.
A.
Tonomura
, J.
Endo
, T.
Matsuda
, T.
Kawasaki
, and Ezawa
, “Demonstration of single-electron buildup of an interference pattern
,” Am. J. Phys.
57
, 117
–120
(1989
).30.
F.
Shimizu
, K.
Shimizu
, and H.
Takuma
, “Double-slit interference with ultracold metastable neon atoms
,” Phys. Rev. A
46
, R17
–R20
(1992
).31.
A. S.
Sanz
and S.
Miret-Artés
, “Aspects of nonlocality from a quantum trajectory perspective: A WKB approach to Bohmian mechanics
,” Chem. Phys. Lett.
445
, 350
–354
(2007
).32.
33.
A. S.
Sanz
and S.
Miret-Artés
, “A causal look into the quantum Talbot effect
,” J. Chem. Phys.
126
, 234106
–1
(2007
).34.
This point can also be seen within the quantum Zeno effect context in:
M.
de Gosson
and B. J.
Hiley
, “Zeno paradox for Bohmian trajectories: The unfolding of the metatron
,” e-print arXiv:1010.2622v2.35.
M. V.
Berry
, “Quantum fractals in boxes
,” J. Phys. A
29
, 6617
–6629
(1996
).36.
A. S.
Sanz
, “A Bohmian approach to quantum fractals
,” J. Phys. A
38
, 6037
–6049
(2005
).37.
A. S.
Sanz
and S.
Miret-Artés
, “A trajectory-based understanding of quantum interference
,” J. Phys. A
41
, 435303
–1
(2008
).38.
C.
Dewdney
and B. J.
Hiley
, “A quantum potential description of one-dimensional time-dependent scattering from square barriers
,” Found. Phys.
12
, 27
–48
(1982
).39.
A. S.
Sanz
, F.
Borondo
, and S.
Miret-Artés
, “Particle diffraction studied using quantum trajectories
,” J. Phys.: Condens. Matter
14
, 6109
–6145
(2002
).40.
A. S.
Sanz
, F.
Borondo
, and S.
Miret-Artés
, “Quantum trajectories in atomsurface scattering with single adsorbates: The role of quantum vortices
,” J. Chem. Phys.
120
, 8794
–8806
(2004
) and
[PubMed]
A. S.
Sanz
, F.
Borondo
, and S.
Miret-Artés
, “Role of quantum vortices in atomic scattering from single adsorbates
,” Phys. Rev. B
69
, 115413(1–5)
(2004
).41.
A. S.
Sanz
, X.
Giménez
, J. M.
Bofill
, and S.
Miret-Artés
, “Understanding chemical reactions within a generalized HamiltonJacobi framework
,” Chem. Phys. Lett.
478
, 89
–96
(2009
and A. S.
Sanz
, X.
Giménez
, J. M.
Bofill
, and S.
Miret-Artés
, “Erratum
,” Chem. Phys. Lett.
488
, 235
–236
(2010
).42.
M.
Davidović
, A. S.
Sanz
, D.
Arsenović
, M.
Božić
, and S.
Miret-Artés
, “Electromagnetic energy flow lines as possible paths of photons
,” Phys. Scr.
T135
, 014009
–1
(2009
) andA. S.
Sanz
, M.
Davidović
, M.
Božić
, and S.
Miret-Artés
, “Understanding interference experiments with polarized light through photon trajectories
,” Ann. Phys.
325
, 763
–784
(2010
).43.
W.
Ehrenberg
and R. E.
Siday
, “The refractive index in electron optics and the principles of dynamics
,” Proc. Phys. Soc. B
62
, 8
–21
(1949
), and Y.
Aharonov
and D.
Bohm
, “Significance of electromagnetic potentials in the quantum theory
,” Phys. Rev.
115
, 485
–491
(1959
), and Y.
Aharonov
and D.
Bohm
, “Further considerations on electromagnetic potentials in the quantum theory
,” Phys. Rev.
123
, 1511
–1524
(1961
).44.
B. D.
Josephson
, “The discovery of tunnelling supercurrents
,” Rev. Mod. Phys.
46
, 251
–254
(1974
).© 2012 American Association of Physics Teachers.
2012
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.