As the universe expands astronomical observables such as brightness and angular size on the sky change in ways that differ from our simple Cartesian expectation. We show how observed quantities depend on the expansion of space and demonstrate how to calculate such quantities using the Friedmann equations. The general solution to the Friedmann equations requires a numerical solution, which is easily coded in any computing language (including excel). We use these numerical calculations in four projects that help students build their understanding of high-redshift phenomena and cosmology. Instructions for these projects are available as supplementary materials.
REFERENCES
1.
D. N.
Spergel
et al, “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of cosmological parameters
,” Astrophys. J., Suppl. Ser.
148
, 175
–194
(2003
).2.
3.
P. J. E.
Peebles
, Principles of Physical Cosmology
(Princeton U.P.
, Princeton, NJ
, 1993
).4.
5.
E.
Hawkins
et al, “The 2dF Galaxy Redshift Survey: Correlation functions, peculiar velocities and the matter density of the Universe
,” Mon. Not. R. Astron. Soc.
346
, 78
–96
(2003
).6.
S.
Permutter
, B. P.
Schmidt
, and A. G.
Riess
, “The Nobel Prize in Physics 2011
,” <www.nobelprize.org/nobel_prizes/physics/laureates/2011/>.7.
R. J.
Nemiroff
and B.
Patla
, “Adventures in Friedmann Cosmology: A detailed expansion of the cosmological Friedmann equations
,” Am. J. Phys.
76
, 265
–276
(2008
).8.
9.
<en.wikipedia.org/wiki/Trapezoidal_rule>.
10.
N.
Jarosik
et al, “Seven-Year Wilkinson Microwave Anisotropy Probe Observations: Sky Maps, Systematic Errors, and Basic Results
,” Astrophys. J., Suppl. Ser.
192
, 14
–15pp
(2011
).11.
W. J.
Percival
et al, “Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample
,” Mon. Not. R. Astron. Soc.
401
, 2148
–2168
(2010
).12.
A. G.
Riess
et al “A redetermination of the hubble constant with the hubble space telescope from a differential distance ladder
,” Astrophys. J.
699
, 539
–563
(2009
).13.
J.
Mather
et al, “Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS)
,” Astrophys. J.
512
, 511
–520
(1999
).14.
K.
Nakamura
et al, “Particle data group
,” J. Phys. G
37
, 075021
(2010
), <pdg.lbl.gov>.15.
E.
Komatsu
et al, “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation
,” Astrophys. J., Suppl. Ser.
192
, 18
–47
(2011
).16.
D.
Larson
et al, “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters
,” Astrophys. J., Suppl. Ser.
192
, 16(19pp) (2011
).17.
J.
Christiansen
, “Computing the expansion history of the universe
,” <lambda.gsfc.nasa.gov/toolbox/education> (2010
).18.
See supplementary material at http://dx.doi.org/10.1119/1.3698352 for an example class project.
19.
C. J.
Lintott
et al, “Galaxy Zoo: Morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey
,” Mon. Not. R. Astron. Soc.
389
1179
–1189
(2008
), <www.galazyzoo.org>, <www.sdss.org>.20.
A.
Riess
et al, “Observational evidence from supernovae for an accelerating universe and a cosmological constant
,” Astrophys. J.
116
, 1009
–1038
(1998
).21.
S.
Perlmutter
et al, “Measurements of Ω and Λ from 42 high-redshift supernovae
,” Astrophys. J.
517
, 565
–586
(1999
).22.
R.
Amanullah
et al, “Spectra and HST light curves of six Type IA supernovae at and the Union2 Compilation
,” Astrophys. J.
716
, 712
–738
(2010
).© 2012 American Association of Physics Teachers.
2012
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.