We describe an experimental implementation of the Malkus–Lorenz water wheel. We demonstrate that both chaotic and periodic behavior is observed as wheel parameters are changed in agreement with predictions from the Lorenz model. We further show that when the measured angular velocity of the water wheel is used as an input signal to a computer model implementing the Lorenz equations, high-quality synchronization of the model and the water wheel is achieved in the chaotic regime. This indicates that the Lorenz equations provide a good description of the water wheel dynamics.

1.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
2.
K.
Dreyer
and
F. R.
Hickey
, “
The route to chaos in a dripping water faucet
,”
Am. J. Phys.
59
,
619
627
(
1991
).
3.
N. J.
Corron
,
S. D.
Pethel
, and
B. A.
Hopper
, “
Controlling chaos with simple limiters
,”
Phys. Rev. Lett.
84
,
3835
3838
(
2000
).
4.
R. A.
Schmitz
,
K. R.
Graziani
, and
J. L.
Hudson
, “
Experimental evidence of chaotic states in the Belousov-Zhabotinskii reaction
,”
J. Chem. Phys.
67
,
3040
3044
(
1977
).
5.
L.
Illing
,
D. J.
Gauthier
, and
R.
Roy
,
Advances in Atomic, Molecular, and Optical Physics
, edited by
P. R.
Berman
,
E.
Arimondo
, and
C.
Lin
(
Elsevier
,
Amsterdam
,
2007
), vol.
54
, pp.
615
695
.
6.
A.
Argyris
,
D.
Syvridis
,
L.
Larger
,
V.
Annovazzi-Lodi
,
P.
Colet
,
I.
Fischer
,
J.
Garcia-Ojalvo
,
C. R.
Mirasso
,
L.
Pesquera
, and
K. A.
Shore
, “
Chaos-based communications at high bit rates using commercial fibre-optic links
,”
Nature (London)
438
,
343
346
(
2005
).
7.
H. L. D. d. S.
Cavalcante
,
D. J.
Gauthier
,
J. E. S.
Socolar
, and
R.
Zhang
, “
On the origin of chaos in autonomous Booleannetworks
,”
Philos. Trans. R. Soc. London, Ser. A. A
368
,
495
513
(
2010
).
8.
K. E.
Callan
,
L.
Illing
,
Z.
Gao
,
D. J.
Gauthier
, and
E.
Schöll
, “
Broadband chaos generated by an optoelectronic oscillator
,”
Phys. Rev. Lett.
104
,
113901
(
2010
).
9.
E. N.
Lorenz
,
The Essence of Chaos
(
University of Washington Press
,
Seattle, WA
,
1993
).
10.
W. V. R.
Malkus
, “
Non-periodic convection at high and low Prandtl number
,”
Mem. Soc. R. Sci. Liege Collect.
in-
4
,
125
128
(
1972
).
11.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos
(
Addison-Wesley
,
Reading, MA
,
1994
).
12.
J. L.
Tylee
, “
Chaos in a real system
,”
Simulation
64
,
176
183
(
1995
).
13.
H. D.
Wiederick
,
N.
Gauthier
,
D. A.
Campbell
, and
P.
Rochon
, “
Magnetic braking: Simple theory and experiment
,”
Am. J. Phys.
55
,
500
503
(
1987
).
14.
M. A.
Heald
, “
Magnetic braking: Improved theory
,”
Am. J. Phys.
56
,
521
522
(
1988
).
15.
M.
Marcuso
,
R.
Gass
,
D.
Jones
, and
C.
Rowlett
, “
Magnetic drag in the quasi-static limit: A computational method
,”
Am. J. Phys.
59
,
1118
1123
(
1991
).
16.
Since one can assume the air drag to be linear in the angular velocity, it is included in this analysis and contributes to κ.
17.
L. E.
Matson
, “
The Malkus–Lorenz water wheel revisited
,”
Am. J. Phys.
75
,
1114
1122
(
2007
).
18.
We use Loc-Line hoses and nozzles.
19.
DigiFlow 8000T.
20.
D.
Pnueli
and
C.
Gutfinger
,
Fluid Mechanics
(
Cambridge University Press
,
1992
).
21.
C.
Sparrow
,
The Lorenz Equations: Bifurcations, Chaos and Strange Attractors
(
Springer-Verlag
,
New York
,
1982
).
22.
Z.
Galias
and
P.
Zgliczynski
, “
Computer assisted proof of chaos in the Lorenz equations
,”
Physica D
115
,
165
188
(
1998
).
23.
W.
Tucker
, “
The Lorenz attractor exists
,”
C. R. Acad. Sci. Ser. I: Math.
328
,
1197
1202
(
1999
).
24.
K.
Mischaikow
,
M.
Mrozek
, and
A.
Szymczak
, “
Chaos in the Lorenz equations: A computer assisted proof part III: Classical parameter values
,”
J. Diff. Eqs.
169
,
17
56
(
2001
).
25.
H. D. I.
Abarbanel
,
Analysis of Observed Chaotic Data
(
Springer
,
New York
,
1995
).
26.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge U.P.
, Cambridge,
2004
).
27.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge U.P.
,
Cambridge
,
2003
).
28.
Chaos synchronization was independently discovered three times: by H. Fujisaka and T. Yamada in Japan [Prog. Theor. Phys. 69, 32–47 (1983)], by V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich in the USSR [Radiophys. Quantum Electron. 29, 795–803 (1986)], and by L. M. Pecora and T. L. Carroll in the US [Phys. Rev. Lett. 64, 821–824 (1990)].
29.
B. R.
Andrievskii
,
V. O.
Nikiforov
, and
A. L.
Fradkov
, “
Adaptive observer-based synchronization of the nonlinear nonpassifiable systems
,”
Autom. Remote Control
68
,
1186
1200
(
2007
).
30.
D. C.
Yu
and
U.
Parlitz
, “
Estimating parameters by autosynchronization with dynamics restrictions
,”
Phys. Rev. E
77
,
066221
(
2008
).
31.
F.
Sorrentino
and
E.
Ott
, “
Using synchronization of chaos to identify the dynamics of unknown systems
,”
Chaos
19
,
033108
(
2009
).
32.
H. D. I.
Abarbanel
,
M.
Kostuk
, and
W.
Whartenby
, “
Data assimilation with regularized nonlinear instabilities
,”
Q. J. R. Meteorol. Soc.
136
,
769
783
(
2010
).
33.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time-series
,”
Physica D
16
,
285
317
(
1985
).
34.
K.
Geist
,
U.
Parlitz
, and
W.
Lauterborn
, “
Comparison of different methods for computing Lyapunov exponents
,”
Prog. Theor. Phys.
83
,
875
893
(
1990
).
35.
S. D.
Souza-Machado
,
R. W.
Rollins
,
D. T.
Jacobs
, and
J. L.
Hartman
, “
Studying chaotic systems using microcomputer simulations and Lyapunov exponents
,”
Am. J. Phys.
58
,
321
329
(
1990
).
36.
V. I.
Oseledets
, “
A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems
,”
Trans. Moscow Math. Soc.
19
,
197
231
(
1968
).
37.
J. D.
Farmer
,
E.
Ott
, and
J. A.
Yorke
, “
The Dimension of chaotic attractors
,”
Physica D
7
,
153
180
(
1983
).
38.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J. M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them, Part 1: Theory
,”
Meccanica
9
,
9
20
(
1980
).
39.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J. M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them, Part 2: Numerical Application
,”
Meccanica
9
,
21
30
(
1980
).
40.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
(
Johns Hopkins U.P.
,
Baltimore
,
1996
).
41.
P.
Swinnerton-Dyer
, “
Bounds for trajectories of the Lorenz equations: An illustration of how to choose Liapunov functions
,”
Phys. Lett. A
281
,
161
167
(
2001
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.