The idea of predicting the future from the knowledge of the past is quite natural, even when dealing with systems whose equations of motion are not known. This long-standing issue is revisited in the light of modern ergodic theory of dynamical systems and becomes particularly interesting from a pedagogical perspective due to its close link with Poincaré’s recurrence. Using such a connection, a very general result of ergodic theory—Kac’s lemma—can be used to establish the intrinsic limitations to the possibility of predicting the future from the past. In spite of a naive expectation, predictability is hindered more by the effective number of degrees of freedom of a system than by the presence of chaos. If the effective number of degrees of freedom becomes large enough, whether the system is chaotic or not, predictions turn out to be practically impossible. The discussion of these issues is illustrated with the help of the numerical study of simple models.

1.
Time Series Prediction: Forecasting the Future and Understanding the Past
, edited by
A. S.
Weigend
and
N. A.
Gershenfeld
(
Addison-Wesley
,
Reading
,
1994
).
2.
H. D. I.
Abarbanel
,
Analysis of Observed Chaotic Data
(
Springer
,
New York
,
1996
).
3.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge U.P.
,
Cambridge
,
1997
).
4.
H.
Poincaré
, “
Sur le problème des trois corps et les équations de la dynamique
,”
Acta Math.
13
,
1
270
(
1890
).
5.
C.
Nicolis
, “
Atmospheric analogs and recurrence time statistics: Toward a dynamical formulation
,”
J. Atmos. Sci.
55
,
465
475
(
1998
).
6.
E. G.
Altmann
and
H.
Kantz
, “
Recurrence time analysis, long-term correlations, and extreme events
,”
Phy. Rev. E
71
,
056106
(
2005
).
7.
J.
Gleick
,
Chaos: Making a New Science
(
Viking
,
New York
,
1987
).
8.
C.
Cercignani
,
Ludwig Boltzmann, The Man Who Trusted Atoms
(
Oxford U.P.
,
Oxford
,
1988
).
9.
D.
Ruelle
, “
Deterministic chaos: The science and the fiction
,”
Proc. R. Soc. London, Ser. A
427
,
241
248
(
1989
).
10.
F.
Takens
, “
Detecting strange attractors in turbulence
,” in
Dynamical Systems and Turbulence
, edited by
D. A.
Rand
and
L. S.
Young
(
Springer
,
Berlin
,
1981
), pp.
366
381
.
11.

The Qohelet’s Book 1:9, NIV.

12.
L.
Campbell
and
W.
Garnett
,
The Life of James Clerk Maxwell
(
Macmillan
,
London
,
1882
).
13.
P.
Lynch
,
The Emergence of Numerical Weather Prediction: Richardson’s Dream
(
Cambridge U.P.
,
Cambridge
,
2006
).
14.
L. F.
Richardson
,
Weather Prediction by Numerical Process
(
Cambridge U.P.
,
Cambridge
,
1922
).
15.
E. N.
Lorenz
, “
Atmospheric predictability as revealed by naturally occurring analogues
,”
J. Atmos. Sci.
26
,
636
646
(
1969
).
16.
E. N.
Lorenz
, “
Three approaches to atmospheric predictability
,”
Bull. Am. Meteorol. Soc.
50
,
345
349
(
1969
).
17.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
18.
M.
Cencini
,
F.
Cecconi
, and
A.
Vulpiani
,
Chaos: From Simple Models to Complex Systems
(
World Scientific Publishing
,
Singapore
,
2009
).
19.
S.
De Souza-Machado
,
R. W.
Rollins
,
D. T.
Jacobs
, and
J. L.
Hartman
, “
Studying chaotic systems using microcomputer simulations and Lyapunov exponents
,”
Am. J. Phys.
58
,
321
329
(
1990
).
20.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
21.
E. N.
Lorenz
, “
Predictability—A problem partly solved
,” in
Proc. Seminar on Predictability
(
ECMWF
,
Reading, UK
,
1996
), pp.
1
18
.
22.
A.
Karimi
and
M. R.
Paul
, “
Extensive chaos in the Lorenz-96 model
,”
Chaos
20
,
043105
(
2010
).
23.
G.
Paladin
and
A.
Vulpiani
, “
Anomalous scaling laws in multifractal objects
,”
Phys. Rep.
156
,
147
225
(
1987
).
24.
P.
Grassberger
and
I.
Procaccia
, “
Characterization of strange attractors
,”
Phys. Rev. Lett.
50
,
346
349
(
1983
).
25.
M.
Kac
, “
On the notion of recurrence in discrete stochastic processes
,”
Bull. Am. Math. Soc.
53
,
1002
1010
(
1947
).
26.

We sketch the derivation in the simple case of a discrete-state system as obtained by partitioning the phase-space of the given system into a discrete number of regions {ρj}, each one defining a coarse-grained state j, such that the probability pj of a state j is given by pj=μ(ρj). We can focus on a state s. Assume that during the time interval T, a system trajectory has visited Ns times the sth state (representing here the set σ). Denoting with τs(i) the time taken by the ith return to the state s, the mean recurrence time is i=1Nsτs(i)/Ns=T/Ns, that is, the inverse of the fraction of time spent by the system in the sth state, fs=Ns/T. Invoking ergodicity, in the limit T, we have T/Nsτs and fsps, where ps is the probability of the sth state (i.e., the probability μ(σ)) so that τs=1/ps, which represents Eq. (14). Replacing T and Ns with M – 1 and M(ϵ), respectively, we obtain Eqs. (10) and (11), with Δt=1, so that for large M, Eq. (11) gives again Kac’s result.

27.
P. C.
Hemmer
,
L. C.
Maximon
, and
H.
Wergeland
, “
Recurrence time of a dynamical system
,”
Phys. Rev.
111
,
689
694
(
1958
).
28.
M.
Kac
, “
Remark on recurrence times
,”
Phys. Rev.
115
,
1
(
1959
).
29.
L. A.
Smith
, “
Intrinsic limits on dimension calculations
,”
Phys. Lett. A
133
,
283
288
(
1988
).
30.
E. J.
Kostelich
and
D. P.
Lathrop
, “
Time series prediction by using the method of analogues
,” in
Time Series Prediction: Forecasting the Future and Understanding the Past
, edited by
A. S.
Weigend
and
N. A.
Gershenfeld
(
Addison-Wesley
,
Reading
,
1994
), pp.
283
295
.
31.
G.
Boffetta
,
M.
Cencini
,
M.
Falcioni
, and
A.
Vulpiani
, “
Predictability: A way to characterize complexity
,”
Phys. Rep.
356
,
367
474
(
2002
).
32.
E.
Olbrich
,
R.
Hegger
, and
H.
Kantz
, “
Analysing local observations of weakly coupled maps
,”
Phys. Lett. A
244
,
538
544
(
1998
).
33.
W. H.
Munk
and
D. E.
Cartwright
, “
Tidal spectroscopy and prediction
,”
Philos. Trans. R. Soc. London, Ser. A
259
,
533
581
(
1966
).
34.
S.
Ducheyne
, “
Whewell’s tidal researches: Scientific practice and philosophical methodology
,”
Stud. Hist. Philos. Sci., Part A
41
,
26
40
(
2010
).
35.
T.
Ehret
, “
Old brass brains—Mechanical prediction of tides
,”
ACSM Bull.
233
,
41
44
(
2008
).
36.
V.
Khokhlov
,
A.
Glushkov
,
N.
Loboda
,
N.
Serbov
, and
K.
Zhurbenko
, “
Signatures of low-dimensional chaos in hourly water level measurements at coastal site of Mariupol, Ukraine
,”
Stochastic Environ. Res. Risk Assess.
22
,
777
787
(
2008
).
37.
T. W.
Frison
,
H. D. I.
Abarbanel
,
M. D.
Earle
,
J. R.
Schultz
, and
W. D.
Scherer
, “
Chaos and predictability in ocean water levels
,”
J. Geophys. Res.
104
,
7935
7951
, doi: (
1999
).
38.
F.
Creutzig
,
A.
Globerson
, and
N.
Tishby
, “
Past-future information bottleneck in dynamical systems
,”
Phys. Rev. E
79
,
041925
(
2009
).
39.
T. S.
Cubitt
,
J.
Eisert
, and
M. M.
Wolf
, “
Extracting dynamical equations from experimental data is NP hard
,”
Phys. Rev. Lett.
108
,
120503
(
2012
).
40.
C.
Anderson
, “The end of theory: The data deluge makes the scientific method obsolete,” Wired Magazine 16.07, <http://www.wired.com/science/discoveries/magazine/16-07/pb_intr>.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.