The article describes a systematic experimental study of a string vibrating nonlinearly. The string is tracked in real time using strategically located cameras; the video tracking enables a remote observation of the oscillator without perturbing its inherent nonlinearities. We show that our technique can help probe the parametrically excited oscillations and study phenomena such as elliptical and circular trajectories near resonance, resonance fold-over, jump, hysteresis, and subharmonic resonance. The experiment has been successfully employed in the advanced physics laboratory.

1.
J. W.
Strutt
(Lord Rayleigh), “
On maintained vibrations
,”
Philos. Mag.
15
,
229
235
(
1883
).
2.
O. O.
Reilly
and
P. J.
Holmes
, “
Non-linear, non-planar and non-periodic vibrations of a string
,”
J. Sound Vib.
153
,
413
435
(
1992
).
3.
G.
Weinreich
, “
Coupled piano strings
,”
J. Acoust. Soc. Am.
62
,
1474
1484
(
1977
).
4.
B.
Bank
and
L.
Sujbert
, “
Generation of longitudinal vibrations in piano strings: From physics to sound synthesis
,”
J. Acoust. Soc. Am.
117
,
2268
2278
(
2005
).
5.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
McGraw-Hill
,
New York
,
1968
).
6.
J. A.
Elliott
, “
Intrinsic nonlinear effects in vibrating strings
,”
Am. J. Phys.
48
,
478
480
(
1980
).
7.
J. A.
Elliott
, “
Nonlinear resonance in vibrating strings
,”
Am. J. Phys.
50
,
1148
1150
(
1982
).
8.
T.
Tolenon
,
V.
Valimaki
, and
M.
Karjalainen
, “
Modeling of tension modulation nonlinearity in plucked strings
,”
IEEE Trans. Speech Audio Process.
8
,
300
310
(
2000
).
9.
T. C.
Molteno
and
N. B.
Tufillaro
, “
An experimental investigation into the dynamics of a string
,”
Am. J. Phys.
72
,
1157
1169
(
2004
).
10.
E. W.
Lee
, “
Nonlinear forced vibration of a stretched string
,”
Br. J. Appl. Phys.
8
,
411
413
(
1957
).
11.
S.
Parmley
,
T.
Zobrist
,
T.
Clough
,
A.
Perez-Miller
,
M.
Makela
, and
R.
Yu
, “
Vibrational properties of a loaded string
,”
Am. J. Phys.
63
,
547
553
(
1995
).
12.
L. A.
Pipes
and
L. R.
Harvill
,
Applied Mathematics for Engineers and Physicists
(
McGraw-Hill
,
Tokyo
,
2000
).
13.
A. H.
Nayfeh
,
Perturbation Methods
(
John Wiley & Sons
,
Toronto
,
1973
).
14.
D. W.
Jordan
and
P.
Smith
,
Nonlinear Ordinary Differential Equations
(
Oxford U.P.
,
Oxford
,
2007
).
15.
N.
Kryloff
and
N.
Bogoliuboff
,
Introduction to Non-Linear Mechanics
(
Princeton U.P.
,
London
,
1947
).
16.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory
(
Springer International Edition
,
Delhi
,
2008
).
17.
R. A.
Sousa
,
R. M.
Souza
,
F. P.
Figuerido
, and
I. F. M.
Menezes
, “
The influence of bending and shear stiffness and rotational inertia in vibrations of cables: An analytical approach
,”
Eng. Struct.
33
,
689
695
(
2011
).
18.
R. J.
Hanson
,
J. M.
Anderson
, and
H. K.
Macomber
, “
Measurements of nonlinear effects in a driven vibrating wire
,”
J. Acoust. Soc. Am.
96
,
1549
1556
(
1994
).
19.
D.
Banerjee
and
J. K.
Bhattacharjee
, “
Analyzing jump phenomena and stability in nonlinear oscillators using renormalization group arguments
,”
Am. J. Phys.
78
,
142
149
(
2010
).
20.
E.
Delabaere
and
F.
Pham
, “
Unfolding the quartic oscillator
,”
Ann. Phys.
261
,
180
218
(
1997
).
21.
See supplementary material at http://dx.doi.org/10.1119/1.4740251 for a video of the string made to vibrate at twice the fundamental frequency.
22.
O. V.
Gendelman
,
D. V.
Gorlov
,
L. I.
Manevitch
, and
A. I.
Musienko
, “
Dynamics of coupled linear and essentially nonlinear oscillators with substantially different masses
,”
J. Sound Vib.
286
,
1
19
(
2005
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.