A new family of rigorous solutions to the two-dimensional Helmholtz equation is discussed. These solutions form a complete orthonormal basis in terms of which any focused field can be expressed. The directionality of each element of this basis is regulated by a parameter which is related to an imaginary displacement of the focus. The forces and torques that these fields and any linear combination of them exert on a homogeneous circular scatterer can be calculated analytically, regardless of the relative position between the scatterer and the focus.

1.
N. J.
Moore
and
M. A.
Alonso
, “
Bases for the description of monochromatic, strongly focused, scalar fields
,”
J. Opt. Soc. Am. A
26
,
1754
1761
(
2009
).
2.
N. J.
Moore
and
M. A.
Alonso
, “
Closed-form bases for the description of monochromatic, strongly focused, electromagnetic fields
,”
J. Opt. Soc. Am. A
26
,
2211
2218
(
2009
).
3.
J. E.
Durnin
,
J. J.
Miceli
, and
J. H.
Eberly
, “
Diffraction-free beams
,”
Phys. Rev. Lett.
58
,
1499
1501
(
1987
).
4.
J. C.
Gutiérrez-Vega
,
M. D.
Iturbe-Castillo
, and
S.
Chávez-Cerda
, “
Alternative analytic formulation for invariant optical fields: Mathieu beams
,”
Opt. Lett.
25
,
1493
1495
(
2000
).
5.
J. C.
Gutiérrez-Vega
and
M. A.
Bandres
, “
Helmholtz-Gauss waves
,”
J. Opt. Soc. Am. A
22
,
289
298
(
2005
).
6.
See the supplementary material at http://dx.doi.org/10.1119/1.3650694 for the Mathematica code.
7.
A.
Ashkin
, “
Acceleration and trapping of particles by radiation pressure
,”
Phys. Rev. Lett.
24
,
156
159
(
1970
).
8.
D.
Grier
, “
A revolution in optical manipulation
,”
Nature Photon.
424
,
810
816
(
2003
).
9.
Yu. A.
Kravtsov
, “
Complex ray and complex caustics
,”
Radiophys. Quantum Electron.
10
,
719
730
(
1967
).
10.
J.
Arnaud
, “
Degenerate optical cavities. II: Effects of misalignments
,”
Appl. Opt.
8
,
1909
1917
(
1967
).
11.
J. B.
Keller
and
W.
Streifer
, “
Complex rays with an application to Gaussian beams
,”
J. Opt. Soc. Am.
61
,
40
43
(
1971
).
12.
G. A.
Deschamps
, “
Gaussian beams as a bundle of complex rays
,”
Electron. Lett.
7
,
684
685
(
1971
).
13.
M. V.
Berry
, “
Evanescent and real waves in quantum billiards and Gaussian beams
,”
J. Phys. A
27
,
L391
L398
(
1994
).
14.
C. J. R.
Sheppard
and
S.
Saghafi
, “
Beam modes beyond the paraxial approximation: A scalar treatment
,”
Phys. Rev. A
57
,
2971
2979
(
1998
).
15.
C. J. R.
Sheppard
, “
High-aperture beams
,”
J. Opt. Soc. Am. A
18
,
1579
1587
(
2001
).
16.
See, for example,
A. E.
Siegman
,
Lasers
(
University Science Books
,
Sausalito
,
1986
), pp.
642
652
.
17.
M.
Kerker
,
The Scattering of Light and Other Electromagnetic Radiation
(
Academic
,
New York
,
1969
).
18.
G.
Gouesbet
, “
Generalized Lorenz-Mie theories, the third decade: A perspective
,”
J. Quant. Spectrosc. Radiat. Transf.
110
,
1223
1238
(
2009
).
19.
N. J.
Moore
and
M. A.
Alonso
, “
Closed-form formula for Mie scattering of nonparaxial analogues of Gaussian beams
,”
Opt. Express
16
,
5926
5933
(
2008
).
20.
J. J.
Foncannon
, “
Review of ‘classical and quantum orthogonal polynomials in one variable’ by Mourad Ismail
,”
Math. Intell.
30
,
54
60
(
2008
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.