The radiant and luminous power spectra, efficiency, and luminous efficacy of commercially available light-emitting diodes (LEDs) are measured. The output radiant power is determined with a silicon photodiode from its typical spectral response. A calculation of the radiant power spectra and the luminous power spectra is demonstrated. The frequency response of the LEDs is determined in the range 10–107 Hz. For the white LED, the frequency response of the primary blue emission and the green-yellow phosphorescence is measured separately, and the phosphorescence time constant is estimated. The ratio h/e is estimated using the emission wavelengths and the “turn-on” voltages.

1.
M. G.
Craford
and
F. M.
Steranka
,
“Light-emitting diodes,”
in
Encyclopedia of Applied Physics
, edited by
G. L.
Trigg
(
VCH
,
Weinheim
,
1994
), Vol.
8
, pp.
485
514
.
2.
B. G.
Streetman
and
S.
Banerjee
,
Solid State Electronic Devices
, 5th ed. (
Prentice Hall
,
Upper Saddle River, NJ
,
2000
), pp.
379
396
.
3.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley
,
Hoboken, NJ
,
2007
), pp.
601
621
.
4.
N.
Holonyak
,
“Is the light emitting diode (LED) an ultimate lamp?”
Am. J. Phys.
68
,
864
866
(
2000
).
5.
S. K.
Mayer
,
“Bringing science policy into the optics classroom: Solid state lighting and United States lighting standards,”
Am. J. Phys.
78
,
1258
1264
(
2010
).
6.
H.
Kogelnik
,
“Optical communications,”
in
Encyclopedia of Applied Physics
, edited by
G. L.
Trigg
(
VCH
,
Weinheim
,
1995
), Vol.
12
, pp.
119
155
.
7.
J. B.
Kwasnoski
,
“A laboratory investigation of light-emitting diodes,”
Am. J. Phys.
40
,
588
591
(
1972
).
8.
J. A.
Davis
and
M. W.
Mueller
,
“Temperature dependence of the emission from red and green light emitting diodes,”
Am. J. Phys.
45
,
770
771
(
1977
).
9.
J. W.
Jewett
,
“Get the LED out,”
Phys. Teach.
29
,
530
534
(
1991
).
10.
D. A.
Johnson
,
“Demonstrating the light-emitting diode,”
Am. J. Phys.
63
,
761
762
(
1995
).
11.
D.
Lottis
and
H.
Jaeger
,
“LEDs in physics demos: A handful of examples,”
Phys. Teach.
34
,
144
146
(
1996
).
12.
A. M.
Ojeda
,
E.
Redondo
,
G.
González Díaz
, and
I.
Mártil
,
“Analysis of light-emission processes in light-emitting diodes and semiconductor lasers,”
Eur. J. Phys.
18
,
63
67
(
1997
).
13.
E.
Redondo
,
A.
Ojeda
,
G.
González Díaz
, and
I.
Mártil
,
“A laboratory experiment with blue light-emitting diodes,”
Am. J. Phys.
65
,
371
376
(
1997
).
14.
L. T.
Escalada
,
N. S.
Rabello
, and
D. A.
Zollman
,
“Student explorations of quantum effects in LEDs and luminescent devices,”
Phys. Teach.
42
,
173
179
(
2004
).
15.
J. W.
Precker
,
“Simple experimental verification of the relation between the band-gap energy and the energy of photons emitted by LEDs,”
Eur. J. Phys
.
28
,
493
500
(
2007
).
16.
F. B.
Seeley
,
A.
Bandas
,
M.
Fowler
, and
R.
Gibson
,
“An inexpensive light-emitting diode strobe system for measuring the radius of a single sonoluminescing bubble,”
Am. J. Phys.
67
,
162
164
(
1999
).
17.
P. A.
DeYoung
and
B.
Mulder
,
“Studying collisions in the general physics laboratory with quadrature light emitting diode sensors,”
Am. J. Phys.
70
,
1226
1230
(
2002
).
18.
Se-yuen
Mak
,
“A multipurpose LED light source for optics experiments,”
Phys. Teach.
42
,
550
552
(
2004
).
19.
W. P.
Garver
,
“The photoelectric effect using LEDs as light sources,”
Phys. Teach.
44
,
272
275
(
2006
).
20.
HuiYuan Opto-Electronic <www.hyledchina.com>.
21.
Y.
Kraftmakher
,
“Experiments with fluorescent lamps,”
Phys. Teach.
48
,
461
464
(
2010
).
22.
PASCO <www.pasco.com>.
23.
Y.
Kraftmakher
,
“Determination of the quantum efficiency of a light detector,”
Eur. J. Phys.
29
,
681
687
(
2008
).
24.
Y.
Kraftmakher
,
“Decay time of cathodoluminescence,”
Phys. Educ.
44
,
43
47
(
2009
).
25.
OriginLab <www.originlab.com>.
26.
D. C.
Agrawal
,
H. S.
Leff
, and
V. J.
Menon
,
“Efficiency and efficacy of incandescent lamps,”
Am. J. Phys.
64
,
649
654
(
1996
).
28.
Y.
Kraftmakher
,
“Telemetry in the classroom,”
Phys. Teach.
41
,
544
545
(
2003
).
29.
Y.
Kraftmakher
,
“Video through a light guide,”
Am. J. Phys.
76
,
788
791
(
2008
).
30.
H.
Le Minh
,
D.
O’Brien
,
G.
Faulkner
,
L.
Zeng
,
K.
Lee
,
D.
Jung
, and
Y.
Oh
,
“High-speed visible light communications using multiple-resonant equalization,”
IEEE Photonics Technol. Lett.
20
,
1243
1245
(
2008
).
31.
P. J.
O’Connor
and
L. R.
O’Connor
,
“Measuring Planck’s constant using a light emitting diode,”
Phys. Teach.
12
,
423
425
(
1974
).
32.
L.
Nieves
,
G.
Spavieri
,
B.
Fernandez
, and
R. A.
Guevara
,
“Measuring the Planck constant with LEDs,”
Phys. Teach.
35
,
108
109
(
1997
).
33.
F.
Zhou
and
T.
Cloninger
,
“Computer-based experiment for determining Planck’s constant using LEDs,”
Phys. Teach.
46
,
413
415
(
2008
).
34.
D. F.
Holcomb
,
“LEDs: Their charm and pitfalls,”
Phys. Teach.
35
,
198
(
1997
).
35.
R.
Morehouse
,
“Answer to Question #53. Measuring Planck’s constant by means of an LED,”
Am. J. Phys.
66
,
12
(
1998
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.