Identical classical particles are distinguishable. This distinguishability affects the number of ways W a macrostate can be realized on the microlevel, and from the relation S=klnW leads to a nonextensive expression for the entropy. This result is usually considered incorrect because of its inconsistency with thermodynamics. It is sometimes concluded from this inconsistency that identical particles are fundamentally indistinguishable and that quantum mechanics is indispensable for making sense of this inconsistency. In contrast, we argue that the classical statistics of distinguishable particles and the resulting nonextensive entropy function are perfectly acceptable from both a theoretical and an experimental perspective. The inconsistency with thermodynamics can be removed by taking into account that the entropy concept in statistical mechanics is not completely identical to the thermodynamical one. We observe that even identical quantum particles are in some cases distinguishable, and conclude that quantum mechanics is irrelevant to the Gibbs paradox.

1.
For simplicity, we assume here that the number of available states is finite, although very large compared to the number of particles.
2.
E.
Schrödinger
,
Statistical Thermodynamics
(
Cambridge University Press
,
Cambridge
,
1948
), pp.
58
62
.
3.
K.
Huang
,
Statistical Mechanics
(
Wiley
,
New York
,
1963
), pp.
153
155
.
4.
G. H.
Wannier
,
Statistical Physics
(
Wiley
,
New York
,
1966
), pp.
167
170
.
5.
A.
Sommerfeld
,
Thermodynamik und Statistik
(
Deutsch
,
Thun
,
1977
), pp.
194
195
216
218
.
6.
D. V.
Schroeder
,
An Introduction to Thermal Physics
(
Addison-Wesley Longman
,
San Francisco
,
2000
), pp.
79
81
.
7.
A.
Ben-Naim
, “
On the so-called Gibbs paradox, and on the real paradox
,”
Entropy
9
,
132
136
(
2007
).
8.
D.
Hestenes
, “
Entropy and indistinguishability
,”
Am. J. Phys.
38
(
7
),
840
845
(
1970
).
9.
S.
Fujita
, “
On the indistinguishability of classical particles
,”
Found. Phys.
21
(
4
),
439
457
(
1991
).
10.
J. F.
Nagle
, “
Regarding the entropy of distinguishable particles
,”
J. Stat. Phys.
117
(
5/6
),
1047
1062
(
2004
).
11.
S.
Saunders
, “
On the explanation for quantum statistics
,”
Stud. Hist. Philos. Mod. Phys.
37
,
192
211
(
2006
).
12.
S. -K.
Lin
, “
Gibbs paradox of entropy of mixing: Experimental facts, its rejection and the theoretical consequences
,”
Electron. J. Theor. Chem.
1
,
135
151
(
1996
).
13.
R. H.
Swendsen
, “
‘Statistical mechanics of classical systems with distinguishable particles
,”
J. Stat. Phys.
107
(
5/6
),
1143
1166
(
2002
).
14.
R. H.
Swendsen
, “
Gibbs’ paradox and the definition of entropy
,”
Entropy
10
,
15
18
(
2008
).
15.
N. G.
van Kampen
, in
Essays in Theoretical Physics
, edited by
W. E.
Parry
(
Pergamon
,
Oxford
,
1984
), pp.
303
312
.
16.
P.
Ehrenfest
and
V.
Trkal
, “
Deduction of the dissociation-equilibrium from the theory of quanta and a calculation of the chemical constant based on this
,’’
Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam
23
,
162
183
(
1920
);
P.
Ehrenfest
and
V.
Trkal
, translated from “
Afleiding van het dissociatie-evenwicht uit de theorie der quanta en een daarop gabaseerbe berekening van de chemische constanten
,”
Versl. Gewone Vergad. Afd. Natuurkd., K. Ned. Akad. Wet.
28
,
906
929
(
1920
);
P.
Ehrenfest
and
V.
Trkal
, also published as “
Ableitung des Dissociationsgleichgewichts aus der Quantentheorie und darauf beruhende Berechnug chemischer Konstanten
,”
Ann. Phys.
65
,
609
628
(
1921
);
also published in
P.
Ehrenfest
,
Collected Scientific Papers
(
North-Holland
,
Amsterdam
,
1959
), pp.
414
435
.
17.
Reference 13 also denies that classical particles should be treated as indistinguishable. In contrast, Ref. 13 claims that use of the Boltzmann entropy S=klnW leads to incorrect predictions for distinguishable particles.
18.
If this nonextensivity is not taken into account, incorrect predictions are obtained when S=klnW is used. See Ref. 13.
19.
D.
Dieks
, in
Explanation, Prediction and Confirmation
, edited by
D.
Dieks
,
W. J.
Gonzalez
,
S.
Hartmann
,
T.
Uebel
, and
M.
Weber
(
Springer
,
New York
,
2010
), pp.
367
377
.
20.
C. -H.
Cheng
, “
Thermodynamics of the system of distinguishable particles
,”
Entropy
11
,
326
333
(
2009
).
21.
D.
Dieks
and
M. A. M.
Versteegh
, “
Identical quantum particles and weak discernibility
,”
Found. Phys.
38
(
10
),
923
934
(
2008
).
22.
D.
Dieks
and
A.
Lubberdink
, “
How classical particles emerge from the quantum world
,”
Found. Phys.
41
(
6
),
1051
1064
(
2011
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.