The Lenz–Sommerfeld argument allows an ingenious and simple derivation of the Schwarzschild solution of Einstein equations of general relativity. We use the same reasoning to construct the de Sitter line element.
REFERENCES
1.
D.
Halliday
, R.
Resnick
, and J.
Walker
, Fundamentals of Physics
, 4th ed. (John Wiley & Sons
, New York
, 1993
).2.
See Ref. 1, p.
430
.3.
R.
v. Eötvös
, D.
Pekár
, and E.
Fekete
, “Beiträge zum Gesetze der Proportionalität von Trägheit und Gravität
,” Ann. Phys.
373
, 11
–66
(1922
).4.
R.
Adler
, M.
Bazin
, and M.
Schiffer
, Introduction to General Relativity
, 2nd ed. (McGraw-Hill Kogakusha
, Tokyo
, 1975
).5.
6.
W.
de Sitter
, “On the relativity of inertia: Remarks concerning Einstein’s latest hypothesis
,” Proc. Akad. Weteusch. Amsterdam
19
, 1217
–1225
(1917
).7.
8.
A clear and pedagogical derivation of the Friedmann equations is given by B. Ryden in Ref. 7 where Eqs. (10) and (11) are obtained from Newtonian arguments. The Lemaître–Robertson–Walker line element, Eq. (12), is motivated in Chap. 3.
9.
R.
Aldrovandi
and J. G.
Pereira
, “An introductory course on physical cosmology
,” available at ⟨www.ift.unesp.br/grg⟩.10.
The interpretation of the repulsive effect of in terms of a force is not de Sitter’s contribution, and is not strictly meaningful in the context of general relativity. In Einstein’s theory, the concept of force is abandoned in favor of the curvature of spacetime. However, because we obtain by taking the Friedmann equations as the first step of the derivation, the interpretation is in agreement with the results from the general theory of relativity.
11.
G.
Hinshaw
et al., “Five-year Wilkinson microwave anisotropy probe observations: Data processing, sky maps and basic results
,” Astrophys. J., Suppl. Ser.
180
, 225
–245
(2009
);E.
Komatsu
et al., “Five-Year Wilkinson microwave anisotropy probe observations: Cosmological interpretation
,” Astrophys. J., Suppl. Ser.
180
, 330
–376
(2009
).12.
M.
Kowalski
et al., “Improved cosmological constraints from new, old and combined supernova datasets
,” Astrophys. J.
686
, 749
–778
(2008
).13.
V.
de Sabbata
and M.
Gasperini
, Introduction to Gravitation
(World Scientific
, Singapore
, 1985
).14.
M.
Gasperini
, Relatività e Teoria della Gravitazione
(Springer
, Milan
, 2010
).15.
F. W.
Dyson
, A.
Eddington
, and C.
Davidson
, “A determination of the deflection of light by the Sun’s gravitational field
,” Philos. Trans. R. Soc. London, Ser. A
220
, 291
–333
(1920
).16.
K.
Schwarzschild
, “Über das Gravitationsfeld eines Massenpunktes nach der Einstein’schen Theorie
,” Sitzungsber. K. Preuss. Akad. Wiss.
1
, 189
–196
(1916
).17.
A.
Sommerfeld
, Electrodynamics. Lectures on Theoretical Physics
(Academic Press
, New York
, 1952
), Vol. III
.18.
W. R.
Davis
and G. H.
Katzin
, “Mechanical conservation laws and the physical properties of groups of motions in flat and curved space-times
,” Am. J. Phys.
30
, 750
–764
(1962
).19.
R.
Feynman
, R. B.
Leighton
, and M.
Sands
, The Feynman Lectures on Physics
, 2nd ed. (Addison-Wesley
, Reading, MA
, 2005
), Vol. 1
.20.
L. B.
Okun
, “The concept of mass
,” Phys. Today
42
(6
), 31
–36
(1989
).21.
L. B.
Okun
, “Mass versus relativistic and rest masses
,” Am. J. Phys.
77
(5
), 430
–431
(2009
).22.
23.
As calculated using data available at ⟨nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html⟩.
© 2011 American Association of Physics Teachers.
2011
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.