Linear perturbation analysis is used to determine the natural frequency of two pendulums connected by a rod. The analysis indicates a zone of instability in what looks like a stable system. The paradoxical phenomenon is explained, and a simple experiment confirms the instability.

1.
E. I.
Butikov
, “
On the dynamic stabilization of an inverted pendulum
,”
Am. J. Phys.
69
,
755
768
(
2001
).
2.
L. H.
Cadwell
and
E. R.
Boyko
, “
Linearization of the simple pendulum
,”
Am. J. Phys.
59
,
979
981
(
1991
).
3.
M.
Maianti
,
S.
Pagliara
,
G.
Galimberti
, and
F.
Parmigiani
, “
Mechanics of two pendulums coupled by a stressed spring
,”
Am. J. Phys.
77
,
834
838
(
2009
).
4.
M. Z.
Rafat
,
M. S.
Wheatland
, and
T. R.
Bedding
, “
Dynamics of a double pendulum with distributed mass
,”
Am. J. Phys.
77
,
216
223
(
2009
).
5.
H.
Ziegler
,
Principles of Structural Stability
(
Blaisdell
,
London
,
1968
).
6.
S. P.
Timoshenko
and
J. M.
Gere
,
Theory of Elastic Stability
(
McGraw-Hill
,
London
,
1961
).
7.
L.
Meirovitch
,
Elements of Vibration Analysis
(
McGraw-Hill
,
New York
,
1986
).
8.
A. H.
Nayfeh
,
Introduction to Perturbation Techniques
(
Wiley-Interscience
,
New York
,
1981
).
9.
H. M.
Irvine
,
Cable Structures
(
MIT
,
Cambridge, MA
,
1981
).
10.
I. G.
Tadjbakhsh
and
Y. -M.
Wang
, “
Transient vibrations of a taut inclined cable with a riding accelerating mass
,”
Nonlinear Dyn.
6
,
143
161
(
1994
).
11.
J. S.
Chen
,
H. C.
Li
, and
W. C.
Ro
, “
Slip-through of a heavy elastica on point supports
,”
Int. J. Solids Struct.
47
,
261
268
(
2010
).
12.
H. L.
Langhaar
,
Energy Methods in Applied Mechanics
(
Wiley
,
New York
,
1962
).
13.
F. W.
Sears
and
M. W.
Zemansky
,
College Physics
, 3rd ed. (
Addison-Wesley
,
London
,
1960
).
14.
A.
Cromer
, “
Many oscillations of a rigid rod
,”
Am. J. Phys.
63
,
112
121
(
1995
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.