The concept of effective spin is introduced to underpin the fundamental isomorphism between two apparently disparate fields of physics—phase coherent charge transport in mesoscopic systems and qubit operations in a spin-based quantum logic gate. Together with the Bloch sphere concept, this isomorphism allows transport problems to be formulated in a language more familiar to workers in spintronics and quantum computing. We exemplify the application of the effective spin concept by formulating several charge transport problems in terms of specific unitary operations (rotations) of a spinor on the Bloch sphere.

1.
Y.
Imry
,
Introduction to Mesoscopic Physics
(
Oxford U. P.
,
New York
,
2002
).
2.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Oxford U. P.
,
New York
,
1995
).
3.
M.
Cahay
and
S.
Bandyopadhyay
, in
Advances in Electronics and Electron Physics
, edited by
P. W.
Hawkes
(
Academic Press
,
San Diego
,
1994
), Vol.
89
, pp.
94
253
.
4.
C. W. J.
Beenakker
and
H.
van Houten
, in
Solid State Physics
, edited by
H.
Ehrenreich
and
D.
Turnbull
(
Academic Press
,
Boston
,
1991
), Vol.
44
, pp.
1
228
.
5.
N. S.
Yanofsky
and
M. A.
Mannucci
,
Quantum Computing for Computer Scientists
(
Cambridge U. P.
,
New York
,
2008
).
6.
P.
Kaye
,
R.
Laflamme
, and
M.
Mosca
,
An Introduction to Quantum Computing
(
Oxford U. P.
,
New York
,
2007
).
7.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge U. P.
,
New York
,
2000
).
8.
S.
Bandyopadhyay
and
V. P.
Roychowdhury
, “
Switching in a reversible spin logic gate
,”
Superlattices Microstruct.
22
,
411
416
(
1997
).
9.
L. A.
Openov
and
A. M.
Bychkov
, “
Non-dissipative logic device not based on two coupled quantum dots
,”
Phys. Low-Dimens. Struct.
9–10
,
153
160
(
1998
).
10.
D.
Loss
and
D. P.
DiVincenzo
, “
Quantum computation with quantum dots
,”
Phys. Rev. A
57
,
120
126
(
1998
).
11.
V.
Privman
,
I. D.
Wagner
, and
G.
Kventsel
, “
Quantum computation in quantum-Hall systems
,”
Phys. Lett. A
239
,
141
146
(
1998
).
12.
B. E.
Kane
, “
A silicon-based nuclear spin quantum computer
,”
Nature (London)
393
,
133
137
(
1998
).
13.
S.
Bandyopadhyay
, “
Self-assembled nanoelectronic quantum computer based on the Rashba effect in quantum dots
,”
Phys. Rev. B
61
,
13813
13820
(
2000
).
14.
T.
Calarco
,
A.
Datta
,
P.
Fedichev
, and
P.
Zoller
, “
Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence
,”
Phys. Rev. A
68
,
012310
(
2003
).
15.
A. E.
Popescu
and
R.
Ionicioiu
, “
All-electrical quantum computation with mobile spin qubits
,”
Phys. Rev. B
69
,
245422
(
2004
).
16.
R.
Ionicioiu
, “
Spintronics devices as quantum networks
,”
Laser Phys.
16
,
1444
1450
(
2006
).
17.
I.
Neder
,
N.
Ofek
,
Y.
Chung
,
M.
Heiblum
,
D.
Mahalu
, and
V.
Umansky
, “
Interference between two indistinguishable electrons from independent sources
,”
Nature (London)
448
,
333
337
(
2007
), and references therein.
18.
S.
Datta
,
M.
Cahay
, and
M.
McLennan
, “
Scatter-matrix approach to quantum transport
,”
Phys. Rev. B
36
,
5655
5658
(
1987
).
19.
M.
Cahay
,
M.
McLennan
, and
S.
Datta
, “
Conductance of an array of elastic scatterers: A scattering-matrix approach
,”
Phys. Rev. B
37
,
10125
10136
(
1988
).
20.
S.
Bandyopadhyay
and
M.
Cahay
,
Introduction to Spintronics
(
CRC Press
,
Boca Raton, FL
,
2008
).
21.
Using the unitary property of the scattering matrix, it can be easily checked that the trace of the matrix ρ is unity and ρ satisfies the following properties, ρ=ρ, ρ2=ρ, and Tr[ρ2]=Tr[ρ]=1, which are all characteristics of the density matrix associated with a pure state (Ref. 7).
22.
Y. M.
Blanter
and
M.
Büttiker
, “
Shot noise in mesoscopic conductors
,”
Phys. Rep.
336
,
1
166
(
2000
).
23.
R.
Landauer
, “
Spatial variation of currents and fields due to localized scatterers in metallic conduction
,”
IBM J. Res. Dev.
1
,
223
231
(
1957
).
24.
D. J.
Vezzetti
and
M.
Cahay
, “
Transmission resonances in finite, repeated structures
,”
J. Phys. D
19
,
L53
L55
(
1986
).
25.
M.
Cahay
and
S.
Bandyopadhyay
, “
Properties of the Landauer resistance of finite repeated structures
,”
Phys. Rev. B
42
,
5100
5108
(
1990
).
26.
V. M.
Gasparian
,
B. L.
Altshuler
,
A. G.
Aronov
, and
Z. H.
Kasamanian
, “
Resistance of one-dimensional chains in Kronig-Penny-like models
,”
Phys. Lett. A
132
,
201
205
(
1988
).
27.
V.
Gasparian
, “
Transmission coefficient of an electron traveling across a one-dimensional random potential
,”
Sov. Phys. Solid State
31
(
2
),
266
268
(
1989
).
28.
V.
Gasparian
,
U.
Gummich
,
E.
Jódar
,
J.
Ruiz
, and
M.
Ortuño
, “
Tunneling and dwell time for one-dimensional generalized Kronig-Penney model
,”
Physica B
233
,
72
77
(
1997
).
29.
P. W.
Anderson
, “
Absence of diffusion in certain random lattices
,”
Phys. Rev.
109
,
1492
1505
(
1958
).
30.
C. H.
Holbrow
,
E. J.
Galvez
, and
M. E.
Parks
, “
Photon quantum mechanics and beam splitters
,”
Am. J. Phys.
70
,
260
265
(
2002
).
31.
T. B.
Pittman
,
B. C.
Jacobs
, and
J. D.
Franson
, “
Probabilistic quantum logic operations using polarizing beam splitters
,”
Phys. Rev. A
64
,
062311
(
2001
).
32.
P. T.
Cochrane
and
G. J.
Milburn
, “
Teleportation with the entangled states of a beam splitter
,”
Phys. Rev. A
64
,
062312
(
2001
).
33.
P.
Samuelsson
,
I.
Neder
, and
M.
Büttiker
, “
Reduced and projected two-particle entanglement at finite temperatures
,”
Phys. Rev. Lett.
102
,
106804
(
2009
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.