The concept of effective spin is introduced to underpin the fundamental isomorphism between two apparently disparate fields of physics—phase coherent charge transport in mesoscopic systems and qubit operations in a spin-based quantum logic gate. Together with the Bloch sphere concept, this isomorphism allows transport problems to be formulated in a language more familiar to workers in spintronics and quantum computing. We exemplify the application of the effective spin concept by formulating several charge transport problems in terms of specific unitary operations (rotations) of a spinor on the Bloch sphere.
REFERENCES
1.
2.
S.
Datta
, Electronic Transport in Mesoscopic Systems
(Oxford U. P.
, New York
, 1995
).3.
M.
Cahay
and S.
Bandyopadhyay
, in Advances in Electronics and Electron Physics
, edited by P. W.
Hawkes
(Academic Press
, San Diego
, 1994
), Vol. 89
, pp. 94
–253
.4.
C. W. J.
Beenakker
and H.
van Houten
, in Solid State Physics
, edited by H.
Ehrenreich
and D.
Turnbull
(Academic Press
, Boston
, 1991
), Vol. 44
, pp. 1
–228
.5.
N. S.
Yanofsky
and M. A.
Mannucci
, Quantum Computing for Computer Scientists
(Cambridge U. P.
, New York
, 2008
).6.
P.
Kaye
, R.
Laflamme
, and M.
Mosca
, An Introduction to Quantum Computing
(Oxford U. P.
, New York
, 2007
).7.
M. A.
Nielsen
and I. L.
Chuang
, Quantum Computation and Quantum Information
(Cambridge U. P.
, New York
, 2000
).8.
S.
Bandyopadhyay
and V. P.
Roychowdhury
, “Switching in a reversible spin logic gate
,” Superlattices Microstruct.
22
, 411
–416
(1997
).9.
L. A.
Openov
and A. M.
Bychkov
, “Non-dissipative logic device not based on two coupled quantum dots
,” Phys. Low-Dimens. Struct.
9–10
, 153
–160
(1998
).10.
D.
Loss
and D. P.
DiVincenzo
, “Quantum computation with quantum dots
,” Phys. Rev. A
57
, 120
–126
(1998
).11.
V.
Privman
, I. D.
Wagner
, and G.
Kventsel
, “Quantum computation in quantum-Hall systems
,” Phys. Lett. A
239
, 141
–146
(1998
).12.
B. E.
Kane
, “A silicon-based nuclear spin quantum computer
,” Nature (London)
393
, 133
–137
(1998
).13.
S.
Bandyopadhyay
, “Self-assembled nanoelectronic quantum computer based on the Rashba effect in quantum dots
,” Phys. Rev. B
61
, 13813
–13820
(2000
).14.
T.
Calarco
, A.
Datta
, P.
Fedichev
, and P.
Zoller
, “Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence
,” Phys. Rev. A
68
, 012310
(2003
).15.
A. E.
Popescu
and R.
Ionicioiu
, “All-electrical quantum computation with mobile spin qubits
,” Phys. Rev. B
69
, 245422
(2004
).16.
R.
Ionicioiu
, “Spintronics devices as quantum networks
,” Laser Phys.
16
, 1444
–1450
(2006
).17.
I.
Neder
, N.
Ofek
, Y.
Chung
, M.
Heiblum
, D.
Mahalu
, and V.
Umansky
, “Interference between two indistinguishable electrons from independent sources
,” Nature (London)
448
, 333
–337
(2007
), and references therein.18.
S.
Datta
, M.
Cahay
, and M.
McLennan
, “Scatter-matrix approach to quantum transport
,” Phys. Rev. B
36
, 5655
–5658
(1987
).19.
M.
Cahay
, M.
McLennan
, and S.
Datta
, “Conductance of an array of elastic scatterers: A scattering-matrix approach
,” Phys. Rev. B
37
, 10125
–10136
(1988
).20.
S.
Bandyopadhyay
and M.
Cahay
, Introduction to Spintronics
(CRC Press
, Boca Raton, FL
, 2008
).21.
Using the unitary property of the scattering matrix, it can be easily checked that the trace of the matrix is unity and satisfies the following properties, , , and , which are all characteristics of the density matrix associated with a pure state (Ref. 7).
22.
Y. M.
Blanter
and M.
Büttiker
, “Shot noise in mesoscopic conductors
,” Phys. Rep.
336
, 1
–166
(2000
).23.
R.
Landauer
, “Spatial variation of currents and fields due to localized scatterers in metallic conduction
,” IBM J. Res. Dev.
1
, 223
–231
(1957
).24.
D. J.
Vezzetti
and M.
Cahay
, “Transmission resonances in finite, repeated structures
,” J. Phys. D
19
, L53
–L55
(1986
).25.
M.
Cahay
and S.
Bandyopadhyay
, “Properties of the Landauer resistance of finite repeated structures
,” Phys. Rev. B
42
, 5100
–5108
(1990
).26.
V. M.
Gasparian
, B. L.
Altshuler
, A. G.
Aronov
, and Z. H.
Kasamanian
, “Resistance of one-dimensional chains in Kronig-Penny-like models
,” Phys. Lett. A
132
, 201
–205
(1988
).27.
V.
Gasparian
, “Transmission coefficient of an electron traveling across a one-dimensional random potential
,” Sov. Phys. Solid State
31
(2
), 266
–268
(1989
).28.
V.
Gasparian
, U.
Gummich
, E.
Jódar
, J.
Ruiz
, and M.
Ortuño
, “Tunneling and dwell time for one-dimensional generalized Kronig-Penney model
,” Physica B
233
, 72
–77
(1997
).29.
P. W.
Anderson
, “Absence of diffusion in certain random lattices
,” Phys. Rev.
109
, 1492
–1505
(1958
).30.
C. H.
Holbrow
, E. J.
Galvez
, and M. E.
Parks
, “Photon quantum mechanics and beam splitters
,” Am. J. Phys.
70
, 260
–265
(2002
).31.
T. B.
Pittman
, B. C.
Jacobs
, and J. D.
Franson
, “Probabilistic quantum logic operations using polarizing beam splitters
,” Phys. Rev. A
64
, 062311
(2001
).32.
P. T.
Cochrane
and G. J.
Milburn
, “Teleportation with the entangled states of a beam splitter
,” Phys. Rev. A
64
, 062312
(2001
).33.
P.
Samuelsson
, I.
Neder
, and M.
Büttiker
, “Reduced and projected two-particle entanglement at finite temperatures
,” Phys. Rev. Lett.
102
, 106804
(2009
).© 2011 American Association of Physics Teachers.
2011
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.