When a ball moves through the air, the air exerts a force on the ball. For a sphere moving at constant velocity with respect to the air, this force is called the drag force and it has been well measured. If the sphere moves with a nonconstant velocity there are additional forces. These “unsteady” forces depend on the sphere’s acceleration and, in principle, also on higher derivatives of the motion. The force equal to a constant times the acceleration is called the “added mass” because it increases the effective inertia of the sphere moving through the fluid. We measure the unsteady forces on a sphere by observing the one- and two-dimensional projectile motion of light spheres around the highest point. The one-dimensional motion is well described by just the usual buoyant force and the added mass as calculated in the ideal fluid model. This measurement is an excellent experiment for introductory physics students. For spheres in two-dimensional projectile motion the downward vertical acceleration at the highest point increases with the horizontal velocity. This effect can be described by an additional force proportional to the speed times the acceleration.

1.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Dover Publications
,
New York
,
1978
).
2.
J. J. M.
Magnaudet
, “
The forces acting on bubbles and rigid particles
,” in
Proceedings of ASME Fluids Engineering Division Summer Meeting
,
Vancouver, Canada
, FEDSM97-3522,
1997
, pp.
1
9
;
J.
Magnaudet
and
I.
Eames
, “
The motion of high-Reynolds-number bubbles in inhomogeneous flows
,”
Annu. Rev. Fluid Mech.
32
,
659
708
(
2000
).
3.
J.
Messer
and
J.
Pantaleone
, “
The effective mass of a ball in the air
,”
Phys. Teach.
48
,
52
54
(
2010
).
4.
See, for example,
E.
Rodriguez
and
G.
Gesnouin
, “
Effective mass of an oscillating spring
,”
Phys. Teach.
45
,
100
103
(
2007
).
5.
See, for example,
N.
Ashcroft
and
D.
Mermin
,
Solid State Physics
(
Holt, Rinehart and Winston
,
New York
,
1976
).
6.
See, for example,
T. K.
Kuo
and
J.
Pantaleone
, “
Neutrino oscillations in matter
,”
Rev. Mod. Phys.
61
,
937
979
(
1989
).
7.
See, for example,
K.
Huang
,
Fundamental Forces of Nature: The Story of Guage Fields
(
World Scientific Publishing
,
Singapore
,
2007
);
R.
Mann
,
An Introduction to Particle Physics and the Standard Model
(
CRC
,
Boca Raton
,
2010
).
8.
R. W.
Moorman
, “
Motion of a spherical particle in the accelerated portion of free fall
,” Ph.D. thesis,
University of Iowa
, Iowa City, Iowa,
1955
;
A. T.
Hjelmfelt
and
L. F.
Mockros
, “
Stokes flow behavior of an accelerating sphere
,”
J. Fluid Mech. ASCE
93
,
87
102
(
1967
);
L. F.
Mockros
and
R. Y. S.
Lai
, “
Validity of Stokes theory for accelerating sphere
,”
J. Engrg. Mech. Div., ASCE
95
,
629
640
(
1969
);
N.
Mordant
and
J.-F.
Pinton
, “
Velocity measurement of a settling sphere
,”
Eur. Phys. J. B
18
,
343
352
(
2000
);
L.
Zhang
,
C.
Yang
, and
Z.-S.
Mao
, “
Unsteady motion of a single bubble in highly viscous liquid and empirical correlation of drag coefficient
,”
Chem. Eng. Sci.
63
,
2099
2106
(
2008
).
9.
F.
Odar
and
W. S.
Hamilton
,
J. Fluid. Mech.
18
,
302
314
(
1964
);
P. R.
Schoneborn
, “
The interaction between a single particle and an oscillating flow
,”
Int. J. Multiphase Flow
2
,
307
317
(
1975
);
S. K.
Karanfilian
and
T. J.
Kotas
, “
Drag on a sphere in unsteady motion in a liquid at rest
,”
J. Fluid Mech.
78
,
85
96
(
1978
).
10.
V. K.
Gupta
,
G.
Shanker
, and
N. K.
Sharma
, “
Experiment on fluid drag and viscosity with an oscillating sphere
,”
Am. J. Phys.
54
,
619
622
(
1986
);
D.
Neill
,
D.
Livelybrooks
, and
R. J.
Donnelly
, “
A pendulum experiment on added mass and the principle of equivalence
,”
Am. J. Phys.
75
,
226
229
(
2007
).
11.
PASCO Scientific, <www.pasco.com/>.
12.
Vernier Software and Technology, <www.vernier.com/>.
13.
K.
Takahashi
and
D.
Thompson
, “
Measuring air resistance in a computerized laboratory
,”
Am. J. Phys.
67
,
709
711
(
1999
).
14.
J. E.
Goff
and
M. J.
Carre
, “
Trajectory analysis of a soccer ball
,”
Am. J. Phys.
77
(
11
),
1020
1027
(
2009
).
15.
R. D.
Mehta
, “
Aerodynamics of sports balls
,”
Ann. Rev. Fluid. Mech.
17
,
151
189
(
1985
).
16.
I.
Newton
,
Principia Mathematica
, Book II, Proposition XXXVIII and Scholium to Proposition XL (1687).
17.
T. E.
Faber
,
Fluid Dynamics for Physicists
(
Cambridge U.P.
,
Cambridge
,
1995
).
18.
E.
Achenbach
, “
The effects of surface roughness and tunnel blockage on the flow past spheres
,”
J. Fluid. Mech.
65
,
113
125
(
1974
).
19.
M. S.
Howe
,
G. C.
Lauchle
, and
J.
Wang
, “
Aerodynamic lift and drag fluctuations of a sphere
,”
J. Fluid Mech.
436
,
41
57
(
2001
);
J.
Wang
,
G. C.
Lauchle
, and
M. S.
Howe
, “
Flow-induced force fluctuations on a sphere at high Strouhal number
,”
J. Fluids Struct.
17
,
365
380
(
2003
).
20.
J.
d’Alembert
, Essai d’une nouvelle theorie de la resistance des fluides (
1752
);
Traite de l’Equilibre et du Mouvement des Fluides (
1774
).
21.
D’Alembert’s paradox, <en.wikipedia.org/wiki/D’Alembert’s_paradox/>.
22.
L.
Landau
and
E.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
London
,
1959
).
23.
S.
Temkin
and
S. S.
Kim
, “
Droplet motion induced by weak shock waves
,”
J. Fluid Mech.
96
,
133
157
(
1980
);
S.
Temkin
and
H. K.
Mehta
, “
Droplet drag in an accelerating and decelerating flow
,”
J. Fluid Mech.
116
,
297
313
(
1982
).
24.
M.
Rivero
, “
Eude par simulation numerique des forces exercees sur une inclusion spheriquie par un ecoulement accelere
,” These de Doctorat,
Inst. Nat. Polytech. Toulouse
, France,
1991
;
R.
Mei
,
C. J.
Lawrence
, and
R. J.
Andrian
, “
Unsteady drag on a sphere at finite Reynolds number with small-amplitude fluctuations in the free-stream velocity
,”
J. Fluid Mech.
233
,
613
631
(
1991
);
E. J.
Chang
and
M. R.
Maxey
, “
Unsteady flow about a sphere at low to moderate Reynolds number. Part I. Oscillatory motion
,”
J. Fluid Mech.
277
,
347
379
(
1994
);
E. J.
Chang
and
M. R.
Maxey
, “
Unsteady flow about a sphere at low to moderate Reynolds number. Part II. Accelerated motion
,”
J. Fluid Mech.
303
,
133
153
(
1995
);
L.
Wakaba
and
S.
Balachandar
, “
On the added mass force at finite Reynolds and acceleration number
,”
Theor. Comput. Fluid. Dyn.
21
,
147
153
(
2007
).
25.
C. E.
Brennen
, “
A review of added mass and fluid inertial forces
,” Technical Report, Department of the Navy (
1982
), <authors.library.caltech.edu/233/>.
26.
J.
Gleick
,
Isaac Newton
(
Pantheon Books
,
New York
,
2004
).
27.
J.
Boussinesq
, “
Sur la resistance qu’oppose … soient negligeables
,”
C. R. Acad. Sci. Paris
100
,
935
937
(
1885
).
28.
A. B.
Basset
,
A Treatise on Hydrodynamics
(
Cambridge U.P.
,
Cambridge
,
1888
).
29.
L.
Basano
and
P.
Ottonello
, “
The air drag on an accelerating disk: A laboratory experiment
,”
Am. J. Phys.
57
,
999
1004
(
1989
).
30.
Gravity of Earth, <en.wikipedia.org/wiki/Gravity_of_Earth/>.
31.
D.
Maclsaac
and
A.
Hamalainen
, “
Physics and technical characteristics of ultrasonic sonar systems
,”
Phys. Teach.
40
,
39
46
(
2002
).
32.
Tracker: Free video analysis and modeling tool for physics education, <www.cabrillo.edu/ dbrown/tracker/>.
33.
A.
Page
,
R.
Moreno
,
P.
Candelas
, and
F.
Belmar
, “
The accuracy of web cams in 2D motion analysis: sources of error and their control
,”
Eur. J. Phys.
29
,
857
870
(
2008
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.