Spin dynamics is considered from the point of view of relativistic classical mechanics. It is shown that the assumptions of the Bargmann-Michel-Telegdi theory may be used to obtain an intuitive and convenient equation of motion. The advantage of this approach is that the presence of Thomas precession is automatically and manifestly demonstrated. An easy and unambiguous way to achieve the original Bargmann-Michel-Telegdi equation is also proposed.

1.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1962
), Secs. 11.8 and 11.11.
2.
G. H.
Goedecke
, “
Geometry of the Thomas precession
,”
Am. J. Phys.
46
,
1055
1056
(
1978
).
3.
E. G. P.
Rowe
, “
Rest frames for a point particle in special relativity
,”
Am. J. Phys.
64
,
1184
1196
(
1996
).
4.
J. D.
Hamilton
, “
Relativistic precession
,”
Am. J. Phys.
64
,
1197
1201
(
1996
).
5.
H. A.
Farach
,
Y.
Aharonov
,
C. P.
Poole
, Jr.
, and
S. I.
Zanette
, “
Application of the nonlinear vector product to Lorentz transformations
,”
Am. J. Phys.
47
,
247
249
(
1979
).
6.
J.
Schwinger
, “
Spin precession – A dynamical discussion
,”
Am. J. Phys.
42
,
510
513
(
1974
).
7.
V.
Bargmann
,
L.
Michel
, and
V. L.
Telegdi
, “
Precession of the polarization of particles moving in a homogeneous electromagnetic field
,”
Phys. Rev. Lett.
2
,
435
436
(
1959
).
8.
M.
Conte
and
W. W.
MacKay
,
An Introduction to the Physics of Particle Accelerators
(
World Scientific
,
Singapore
,
2008
), p.
283
.
9.
R.
Hagedorn
,
Relativistic Kinematics
(
W. A. Benjamin
,
New York
,
1963
), Sec. 9.
10.
W. K.
Panofsky
and
M.
Phillips
,
Classical Electricity and Magnetism
(
Addison-Wesley
,
Reading, MA
,
1962
), Sec. 23-5.
11.
R. D.
Sard
,
Relativistic Mechanics
(
W. A. Benjamin
,
New York
,
1970
), Sec. 5.3.
12.
C.
Itzykson
and
J.-B.
Zuber
,
Quantum Field Theory
(
McGraw-Hill
,
New York
,
1980
),
p
17
.
13.
A. O.
Barut
,
Electrodynamics and Classical Theory of Fields and Particles
(
Dover
,
New York
,
1980
), p.
73
80
.
14.
V. A.
Bordovitsyn
and
I. M.
Ternov
,
Synchrotron Radiation Theory and Its Development: In Memory of I. M. Ternov
(
World Scientific
,
Singapore
,
1999
), p.
91
.
15.
J.
Frenkel
, “
Die Elektrodynamik des rotierenden Elektrons
,”
Zeits. Phys.
37
,
243
262
(
1926
).
16.
H. C.
Corben
, “
Spin in classical and quantum theory
,”
Phys. Rev.
121
,
1833
1839
(
1961
).
17.
A.
Staruszkiewicz
, “
Fundamental relativistic rotator
,”
Acta Phys. Polon. B Proc. Suppl.
1
,
109
112
(
2008
).
18.
V.
Kassandrov
,
N.
Markova
,
G.
Schäfer
, and
A.
Wipf
, “
On a model of a classical relativistic particle of constant and universal mass and spin
,”
J. Phys. A: Math. Theor.
42
,
315204
1
(
2009
).
19.
M.
Mathisson
, “
Neue Mechanik materieller Systeme
,”
Acta Phys. Pol.
6
,
163
200
(
1937
).
20.
A.
Papapetrou
, “
Spinning test-particles in general relativity. I
,”
Proc. Roy. Soc. London A
209
,
248
258
(
1951
).
21.
Y. N.
Obukhov
,
A. J.
Silenko
, and
O. V.
Teryaev
, “
Spin dynamics in gravitational fields of rotating bodies and the equivalence principle
,”
Phys. Rev. D
80
,
064044
1
(
2009
).
22.
Gyros, clocks, interferometers…: Testing relativistic gravity in space
, edited by
C.
Lammertzhäl
,
C. W. F.
Everitt
, and
F. W.
Hehl
(
Springer
, Berlin,
2001
).
23.
Y. N.
Obukhov
and
D.
Puetzfeld
, “
Dynamics of test bodies with spin in de Sitter spacetime
,”
Phys. Rev. D
83
,
044024
1
(
2011
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.