Spin dynamics is considered from the point of view of relativistic classical mechanics. It is shown that the assumptions of the Bargmann-Michel-Telegdi theory may be used to obtain an intuitive and convenient equation of motion. The advantage of this approach is that the presence of Thomas precession is automatically and manifestly demonstrated. An easy and unambiguous way to achieve the original Bargmann-Michel-Telegdi equation is also proposed.
REFERENCES
1.
J. D.
Jackson
, Classical Electrodynamics
(Wiley
, New York
, 1962
), Secs. 11.8 and 11.11.2.
G. H.
Goedecke
, “Geometry of the Thomas precession
,” Am. J. Phys.
46
, 1055
–1056
(1978
).3.
E. G. P.
Rowe
, “Rest frames for a point particle in special relativity
,” Am. J. Phys.
64
, 1184
–1196
(1996
).4.
J. D.
Hamilton
, “Relativistic precession
,” Am. J. Phys.
64
, 1197
–1201
(1996
).5.
H. A.
Farach
, Y.
Aharonov
, C. P.
Poole
, Jr., and S. I.
Zanette
, “Application of the nonlinear vector product to Lorentz transformations
,” Am. J. Phys.
47
, 247
–249
(1979
).6.
J.
Schwinger
, “Spin precession – A dynamical discussion
,” Am. J. Phys.
42
, 510
–513
(1974
).7.
V.
Bargmann
, L.
Michel
, and V. L.
Telegdi
, “Precession of the polarization of particles moving in a homogeneous electromagnetic field
,” Phys. Rev. Lett.
2
, 435
–436
(1959
).8.
M.
Conte
and W. W.
MacKay
, An Introduction to the Physics of Particle Accelerators
(World Scientific
, Singapore
, 2008
), p. 283
.9.
10.
W. K.
Panofsky
and M.
Phillips
, Classical Electricity and Magnetism
(Addison-Wesley
, Reading, MA
, 1962
), Sec. 23-5.11.
12.
C.
Itzykson
and J.-B.
Zuber
, Quantum Field Theory
(McGraw-Hill
, New York
, 1980
), p
–17
.13.
A. O.
Barut
, Electrodynamics and Classical Theory of Fields and Particles
(Dover
, New York
, 1980
), p. 73
–80
.14.
V. A.
Bordovitsyn
and I. M.
Ternov
, Synchrotron Radiation Theory and Its Development: In Memory of I. M. Ternov
(World Scientific
, Singapore
, 1999
), p. 91
.15.
J.
Frenkel
, “Die Elektrodynamik des rotierenden Elektrons
,” Zeits. Phys.
37
, 243
–262
(1926
).16.
H. C.
Corben
, “Spin in classical and quantum theory
,” Phys. Rev.
121
, 1833
–1839
(1961
).17.
A.
Staruszkiewicz
, “Fundamental relativistic rotator
,” Acta Phys. Polon. B Proc. Suppl.
1
, 109
–112
(2008
).18.
V.
Kassandrov
, N.
Markova
, G.
Schäfer
, and A.
Wipf
, “On a model of a classical relativistic particle of constant and universal mass and spin
,” J. Phys. A: Math. Theor.
42
, 315204
–1
(2009
).19.
20.
A.
Papapetrou
, “Spinning test-particles in general relativity. I
,” Proc. Roy. Soc. London A
209
, 248
–258
(1951
).21.
Y. N.
Obukhov
, A. J.
Silenko
, and O. V.
Teryaev
, “Spin dynamics in gravitational fields of rotating bodies and the equivalence principle
,” Phys. Rev. D
80
, 064044
–1
(2009
).22.
Gyros, clocks, interferometers…: Testing relativistic gravity in space
, edited by C.
Lammertzhäl
, C. W. F.
Everitt
, and F. W.
Hehl
(Springer
, Berlin, 2001
).23.
Y. N.
Obukhov
and D.
Puetzfeld
, “Dynamics of test bodies with spin in de Sitter spacetime
,” Phys. Rev. D
83
, 044024
–1
(2011
).© 2011 American Association of Physics Teachers.
2011
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.