We develop a systematic approach to determine the large |p| behavior of the momentum-space wave function, ϕ(p), of a one-dimensional quantum system for which the position-space wave function, ψ(x), has a discontinuous derivative at any order. We find that if the kth derivative of the potential energy function for the system has a discontinuity, there is a corresponding discontinuity in ψ(k+2)(x) at the same point. This discontinuity leads directly to a power-law tail in the momentum-space wave function proportional to 1/pk+3. A number of familiar pedagogical examples are examined in this context, leading to a general derivation of the result.

1.
Quote attributed to
Louis
Sullivan
, “
The tall office building artistically considered
,”
Lippincott’s Magazine
(March
1896
)
The entire quotation is available at ⟨en.wikipedia.org/wiki/Form_follows_function⟩.
2.
For example, see
R. W.
Robinett
, “
Quantum and classical probability distributions for position and momentum
,”
Am. J. Phys.
63
,
823
832
(
1995
);
and comments by
C. C.
Real
,
J. G.
Muga
, and
S.
Brouard
, “
Comment on ‘Quantum and classical probability distributions for position and momentum,’ by R. W. Robinett [Am. J. Phys. 63 (9), 823–832 (1995)]
,”
Am. J. Phys.
65
,
157
158
(
1997
).
3.
R. W.
Robinett
, “
Visualizing classical and quantum probability densities for momentum using variations on familiar one-dimensional potentials
,”
Eur. J. Phys.
23
,
165
174
(
2002
).
4.
G.
Yoder
, “
Using classical probability functions to illuminate the relation between classical and quantum physics
,”
Am. J. Phys.
74
,
404
411
(
2006
).
5.
M.
Lieber
, “
Quantum mechanics in momentum space
,”
Am. J. Phys.
43
,
486
491
(
1975
).
6.
P. W.
Langhoff
, “
Schrödinger particle in a gravitational well
,”
Am. J. Phys.
39
,
954
957
(
1971
);
R. L.
Gibbs
, “
The quantum bouncer
,”
Am. J. Phys.
43
,
25
28
(
1975
);
R. D.
Desko
and
D. J.
Bord
, “
The quantum bouncer revisited
,”
Am. J. Phys.
51
,
82
84
(
1983
);
D. A.
Goodings
and
T.
Szeredi
, “
The quantum bouncer by path integral method
,”
Am. J. Phys.
59
,
924
930
(
1991
);
S.
Whineray
, “
An energy representation approach to the quantum bouncer
,”
Am. J. Phys.
60
,
948
950
(
1992
).
7.
V. V.
Nesvizhevsky
 et al., “
Quantum states of neutrons in the Earth’s gravitational field
,”
Nature
415
,
297
299
(
2002
);
[PubMed]
V. V.
Nesvizhevsky
 et al., “
Measurement of quantum states of neutrons in the Earth’s gravitational field
,”
Phys. Rev. D
67
,
102002
-1–9 (
2002
).
8.
C. G.
Aminoff
,
A. M.
Steane
,
P.
Bouyer
,
P.
Desbiolles
,
J.
Dalibard
, and
C.
Cohen-Tannoudji
, “
Cesium atoms bouncing in a stable gravitational cavity
,”
Phys. Rev. Lett.
71
,
3083
3086
(
1993
).
9.
K.
Bongs
,
S.
Burger
,
G.
Birkl
,
K.
Sengstock
,
W.
Ertmer
,
K.
Rzażewski
,
A.
Sanpera
, and
M.
Lewenstein
, “
Coherent evolution of bouncing Bose–Einstein condensates
,”
Phys. Rev. Lett.
83
,
3577
3580
(
1999
).
10.
G.
Della Valle
,
M.
Savoini
,
M.
Ornigotti
,
P.
Laporta
,
V.
Foglietti
,
M.
Finazzi
,
L.
Duò
, and
S.
Longhi
, “
Experimental observation of a photon bouncing ball
,”
Phys. Rev. Lett.
102
,
180402
-1–4 (
2009
).
11.
J.
Gea-Banacloche
, “
A quantum bouncing ball
,”
Am. J. Phys.
67
,
776
782
(
1999
).
12.
O.
Vallée
, “
Comment on ‘A quantum bouncing ball’ by Julio Gea-Banacloche
,”
Am. J. Phys.
68
,
672
673
(
2000
).
13.
D. M.
Goodmanson
, “
A recursion relation for matrix elements of the quantum bouncer. Comment on ‘A quantum bouncing ball’ by Julio Gea-Banacloche
,”
Am. J. Phys.
68
,
866
868
(
2000
).
14.
M.
Belloni
and
R. W.
Robinett
, “
Constraints on Airy function zeros from quantum-mechanical sum rules
,”
J. Phys. A: Math. Theor.
42
,
075203
-1–11 (
2009
).
15.
R. W.
Robinett
, “
The Stark effect in linear potentials
,”
Eur. J. Phys.
31
,
1
13
(
2010
).
16.
J. R.
Albright
, “
Integrals of products of Airy functions
,”
J. Phys. A
10
,
485
490
(
1977
);
R. G.
Gordon
, “
New method for constructing wavefunctions for bound states and scattering
,”
J. Chem. Phys.
51
,
14
25
(
1969
), Appendix B.
17.
D.
Branson
, “
Continuity conditions on Schrödinger wave functions at discontinuities of the potential
,”
Am. J. Phys.
47
,
1000
1003
(
1979
).
18.
C.
Aslangul
, “
δ well with reflecting barrier
,”
Am. J. Phys.
63
,
935
940
(
1995
).
19.
K. R.
Brownstein
, “
Calculation of a bound state wavefunction using free wavefunctions only
,”
Am. J. Phys.
43
,
173
176
(
1975
);
W. C.
Damert
, “
Completeness of the energy eigenstates for a delta function potential
,”
Am. J. Phys.
43
,
531
534
(
1975
);
S. H.
Patil
, “
Completeness of the energy eigenfunctions for the one-dimensional δ-function potential
,”
Am. J. Phys.
68
,
712
714
(
2000
).
20.
O. A.
Ayorinde
,
K.
Chisholm
,
M.
Belloni
, and
R. W.
Robinett
, “
New identities from quantum mechanical sum rules of parity-related potentials
,”
J. Phys. A: Math. Theor.
43
,
235202
-1–22 (
2010
).
21.
See, for example, the theme issue on quantum mechanics,
Am. J. Phys.
70
,
199
367
(
2002
).
22.
B.
Lohmann
and
E.
Weigold
, “
Direct measurement of the electron momentum probability distribution in atomic hydrogen
,”
Phys. Lett. A
86
,
139
141
(
1981
);
I. E.
McCarthy
and
E.
Weigold
, “
A real ‘thought’ experiment for the hydrogen atom
,”
Am. J. Phys.
51
,
152
155
(
1983
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.