An observer who moves on a circular orbit around a Schwarzschild black hole with a constant but arbitrary velocity must compensate for the gravitational and centrifugal acceleration to stay on this orbit. The local reference frame of the observer undergoes a geodesic precession, which depends on the radius of the orbit and the velocity. We describe the details of this circular motion and an interactive program that shows what the observer would see.
REFERENCES
1.
K.
Schwarzschild
, “On the gravitational field of a mass point according to Einstein’s theory
,” Gen. Relativ. Gravit.
35
, 951
–959
(2003
),K.
Schwarzschild
, translated by S. Antoci from “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie
,” Sitzungsber. K. Preuss. Akad. Wiss.
1
, 189
–196
(1916
).2.
3.
R. M.
Wald
, General Relativity
(U. of Chicago Press
, Chicago, London
, 1984
).4.
5.
M. A.
Abramowicz
, “Black holes and the centrifugal force paradox
,” Sci. Am.
268
(3
), 26
–31
(1993
).6.
Information about OpenGL and the OpenGL Shading Language can be found at ⟨www.opengl.org⟩.
7.
8.
Open MPI: A high performance message passing library, ⟨www.open-mpi.org/⟩.
9.
K.
Sakina
and J.
Chiba
, “Parallel transport of a vector along a circular orbit in Schwarzschild spacetime
,” Phys. Rev. D
19
, 2280
–2282
(1979
).10.
B. R.
Iyer
and C. V.
Vishveshwara
, “Frenet–Serret description of gyroscopic precession
,” Phys. Rev. D
48
, 5706
–5720
(1993
).11.
D.
Bini
, C.
Cherubini
, A.
Geralico
, and R. T.
Jantzen
, “Physical frames along circular orbits in stationary axisymmetric spacetimes
,” Gen. Relativ. Gravit.
40
, 985
–1012
(2008
).12.
M. A.
Abramowicz
and A. R.
Prasanna
, “Centrifugal force reversal near a Schwarzschild black-hole
,” Mon. Not. R. Astron. Soc.
245
, 720
–728
(1990
).13.
L.
Lerner
, “A simple calculation of the deflection of light in a Schwarzschild gravitational field
,” Am. J. Phys.
65
, 1194−1196
(1997
).14.
T.
Müller
and F.
Grave
, “GeodesicViewer—A tool for exploring geodesics in the theory of relativity
,” Comput. Phys. Commun.
181
, 413
–419
(2010
).15.
T.
Müller
and D.
Weiskopf
, “Distortion of the stellar sky by a Schwarzschild black hole
,” Am. J. Phys.
78
, 204
–214
(2010
).16.
D.
Weiskopf
, M.
Borchers
, T.
Ertl
, M.
Falk
, O.
Fechtig
, R.
Frank
, F.
Grave
, P.
Jezler
, A.
King
, U.
Kraus
, T.
Müller
, H. -P.
Nollert
, I.
Rica Mendez
, H.
Ruder
, T.
Schafhitzel
, C.
Zahn
, and M.
Zatloukal
, “Explanatory and illustrative visualization of special and general relativity
,” IEEE Trans. Vis. Comput. Graph.
12
, 522
–534
(2006
).17.
C.
Savage
, D.
McGrath
, T. J.
McIntyre
, M.
Wegener
, and M.
Williamson
, “Teaching physics using virtual reality
,” AIP Conf. Proc.
1263
, 126
–129
(2010
).18.
D.
McGrath
, M.
Wegener
, T. J.
McIntyre
, C.
Savage
, and M.
Williamson
, “Student experiences of virtual reality: A case study in learning special relativity
,” Am. J. Phys.
78
, 862
–868
(2010
).19.
20.
The photon orbit at is the only circular lightlike geodesic within the Schwarzschild spacetime. A detailed discussion can be found in Ref. 2.
21.
We use differential geometric notation, where is the coordinate base vector along . For a detailed discussion of this topic see, for example, Ref. 32.
22.
The Milky Way panorama, ESO/S. Brunier, ⟨www.eso.org/public/images/eso0932a⟩.
23.
The Qt library can be found at ⟨qt.nokia.com⟩.
24.
T.
Müller
and F.
Grave
, “Motion4D—A library for lightrays and timelike worldlines in the theory of relativity
,” Comput. Phys. Commun.
180
, 2355
–2360
(2009
).25.
D.
Weiskopf
, U.
Kraus
, and H.
Ruder
, “Searchlight and Doppler effects in the visualization of special relativity: A corrected derivation of the transformation of radiance
,” ACM Trans. Graphics
18
, 278
–292
(1999
).26.
J. D.
Foley
, A.
Van Dam
, S. K.
Feiner
, and J. F.
Hughes
, Computer Graphics: Principles and Practice
(Addison-Wesley
, New York
, 1991
).27.
G.
Wyszecki
and W.
Stiles
, Color Science: Concepts and Methods, Quantitative Data and Formulae
(Wiley Classics Library
, New York
, 2000
).28.
A.
Einstein
, “Lens-like action of a star by the deviation of light in the gravitational field
,” Science
84
, 506
–507
(1936
).29.
30.
W.
de Sitter
, “On Einstein’s theory of gravitation and its astronomical consequences
,” Mon. Not. R. Astron. Soc.
77
, 155
–184
(1916
).31.
H.
Stephani
and J.
Stewart
, General Relativity: An Introduction to the Theory of the Gravitational Field
(Cambridge U. P.
, Cambridge
, 1990
).32.
M.
Nakahara
, Geometry, Topology and Physics
(IOP
, Bristol
, 1990
).© 2011 American Association of Physics Teachers.
2011
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.